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We present stability analyses for the boundary-layer flow over broad cones (half-angle
ψ > 40

◦) rotating in imposed axial flows. Preliminary convective instability analyses are
presented that are based on the Orr–Sommerfeld equation for a variety of axial-flow speeds.
The results are discussed in terms of the limited existing experimental data and previous
stability analyses on related bodies. The results of an absolute instability analysis are also
presented which are intended to further those by Garrett & Peake21 through the use of
a more rigorous steady-flow formulation. Axial flow is seen to delay the onset of both
convective and absolute instabilities.

I. Introduction

The rotating-disk boundary layer has long been used as a model for swept-wing flow because of the
similarity between the basic-flow velocity profiles of the disk and the swept wing.1–3 For this reason research
into the stability of rotating 3D boundary-layer flows has been focused on the disk; very little theoretical
work had been published on the boundary-layer flows over rotating spheres and cones prior to 2002. However,
continuing developments in spinning projectiles, aerofoils, aeroengines and other industrial applications has
led to the need to understand the onset of laminar-turbulent transition of the boundary-layer flows over
rotating disks, spheres and cones as objects in their own right.

For example, rotating spheres and cones are used as nose cones in aeroengine and spinning projectile
applications. Here laminar-turbulent transition within the boundary-layer flow over the nose cones can
lead to significant increases in drag. For aeroengine applications this has negative implications for the fuel
efficiency through increased noise and energy dissipation, and for projectile applications this has negative
implications for control and accurate targeting. Understanding the stability of such boundary-layer flows and
developing strategies to maintain laminar flow will lead to modifications in the design of these applications
and enable significant cost savings. Furthermore, flows arising from rotating disks are present in types of
chemical vapour deposition (CVD) reactors used for depositing thin films of optical and electrical materials
on substrates in the electrochemical industry. Such reactors operate by forcing a carrier gas containing the
reactive molecules onto the substrate held within a disk-like support placed horizontally in the flow. The
gas flow can be considered as a uniform axial flow incident on a rotating disk and it is desirable that the
flow close to the substrate be laminar and free from instability to ensure uniform deposition. Although a
large amount of literature exists on the theoretical and experimental study of the reactor-flow parameters,4–6

these are concerned with the changes in the laminar-flow profiles that can be achieved and the affect these
have on deposition growth rates.

Although numerous flow-visualization studies due to Kobayashi et al.7–17 and recent theoretical studies
due to Garrett & Peake18–22 have been published on the boundary-layer flows over rotating spheres and
cones, a complete understanding of the stability characteristics of such boundary layers with regards to these
applications is still a long way off. This current paper is part of a series by the present authors23,24 which
considers the convective instability of the boundary-layer flow over a family of rotating cones (including the
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disk as the limiting half angle), both in and out of an imposed axial flow. Particular emphasis is placed on the
above applications. The series presents complementing numerical and asymptotic studies and commenced
with an investigation into a family of cones rotating in an otherwise still fluid.23 This was then followed by
an investigation into the disk rotating in an imposed axial flow.24 As we shall see in §II.A, the mathematical
formulation of the rotating-disk problem in axial flow is necessarily different to that for the rotating cone in
axial flow, and this motivates separate publication. This paper is different in structure to the previous two
investigations in that it presents preliminary numerical results only; the asymptotic analysis is still in progress
and will be published separately at a later date. In addition, this paper includes an investigation into the
absolute instability of the boundary-layer flow, which is associated with the onset of turbulence.18–22,25,26

Experimental observations of the transition over rotating cones have noted a distinction between the
transition region on slender and broad cones. For example, experimental studies8 of cones with slender
half-angles rotating in still fluid show the existence of pairs of counter-rotating Görtler-type vortices. These
arise from a dynamic instability induced by the centrifugal force of the flow field. However, as the half-
angle is increased beyond ψ = 30◦, experimental results clearly show that the vortices change from pairs of
counter-rotating vortices to co-rotating crossflow vortices as observed on rotating disks and spheres. The
observed instability for slender cones therefore stems from an inherently different process. Indeed, Garrett
et al.23 hypothesize the existence of a viscous-mode dominated structure for slender cones (ψ ≤ 40◦) which
leads to the onset of a centrifugal Görtler instability that is more dangerous than the usual type I and type
II modes.

Further evidence for different stability characteristics of slender and broad rotating cones is obtained
from the recent experimental measurements for the onset of turbulence in otherwise still fluid by Nickels
(personal communication, 2007). The theoretical prediction for the onset of absolute instability due to
Garrett & Peake21 is independent of half-angle and occurs at local Reynolds number R ≈ 2.5×105. Figure 1
shows Nickels’ results and we see that the onset of turbulence for the non-slender cone (ψ = 60◦) is in good
agreement with the predicted onset of absolute instability and is independent of rotation rate. However, the
onset of turbulence for slender cones (ψ = 30◦ & 15◦) is well in advance of the predicted onset of absolute
instability and dependent on the rotation rate. This observation clearly demonstrates that transition on
slender cones is inconsistent with the onset of absolute instability. Indeed, Nickels notes different behaviour
in the turbulent intensity through transition in the case of the most slender cone which suggests a significantly
different transition mechanism.

Figure 1. Experimental data due to Nickels for the onset of turbulence on rotating cones, uppermost plot is ψ = 60◦.
(Cone angle = 2ψ)

This paper focuses on the impact of axial flow on the stability of the boundary layers over broad rotating
cones (ψ > 40◦). An investigation into the hypothesized Görtler modes is underway and will be published
at a later date.

With regards to similar theoretical studies, Kobayashi et al.15,16 use local-linear stability theory to
predict the onset of spiral vortices in the boundary-layer flows over cones rotating in a uniform axial flow.
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Both papers consider a cone with a half-angle of 15◦ and predict the critical Reynolds number for the onset
of the vortices, the vortex angle and the number of vortices as a function of an axial-flow parameter. The
predictions are found to be qualitatively consistent with experimental measurements.16,17 However, it is now
clear that the transition mechanisms for slender cones are different for broad cones, which would explain
why quantitative agreement was not obtained using their formulation.

Section IV of this paper is related to Garrett & Peake’s21 work on the absolute instability of the rotating-
cone boundary layer in axial flow. The formulation of the laminar-flow profiles presented in this paper have
been considerably improved and now lead to more physically relevant flows. The absolute instability results
contained here should therefore be considered as replacing those due to Garrett & Peake, although their
results for the cone rotating in an otherwise still fluid remain unchanged.

II. Formulation

II.A. Basic flow

Consider a rigid cone of circular cross-section and half-angle ψ that is rotating about its axis of symmetry
with angular velocity Ω⋆. Note that an asterisk denotes a dimensional quantity in all that follows. The
cone is placed in a fluid with an oncoming axial flow parallel to its axis of rotation. We choose the fixed
orthogonal curvilinear coordinate system (x⋆, θ, z⋆) representing streamwise, azimuthal and surface-normal
variation respectively, with the origin located at the apex of the cone. A diagram can be found in Figure 1
of Garrett & Peake.21 The local cross-sectional radius of the cone is r⋆

◦
= x⋆ sinψ.

An appropriate coordinate transformation leads to the full Navier–Stokes equations in the coordinate
system
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∂x⋆
+
U⋆ sinψ

h⋆
+

1

h⋆
∂V ⋆

∂θ
+
∂W ⋆

∂z⋆
+
W ⋆ cosψ

h⋆
= 0, (1)

∂U⋆

∂t⋆
+U⋆

∂U⋆

∂x⋆
+
V ⋆

h⋆
∂U⋆

∂θ
+W ⋆ ∂U

⋆

∂z⋆
−
V ⋆2 sinψ

h⋆
=

−
1

ρ⋆
∂P ⋆

∂x⋆
+ ν⋆

(

∇2U⋆ −
2 sinψ

h⋆2
∂V ⋆

∂θ
−

sinψ

h⋆2
(U⋆ sinψ +W ⋆ cosψ)

)

, (2)

∂V ⋆

∂t⋆
+U⋆

∂V ⋆

∂x⋆
+
V ⋆

h⋆
∂V ⋆

∂θ
+W ⋆ ∂V

⋆

∂z⋆
+
V ⋆

h⋆
(U⋆ sinψ +W ⋆ cosψ) =

−
1

h⋆ρ⋆
∂P ⋆

∂θ
+ ν⋆

(

∇2V ⋆ +
2

h⋆2

(

sinψ
∂U⋆

∂θ
+ cosψ

∂W ⋆

∂θ

)

−
V ⋆

h⋆2

)

, (3)

∂W ⋆

∂t⋆
+U⋆

∂W ⋆

∂x⋆
+
V ⋆

h⋆
∂W ⋆

∂θ
+W ⋆ ∂W

⋆

∂z⋆
−
V ⋆2 cosψ

h⋆
=

−
1

ρ⋆
∂P ⋆

∂z⋆
+ ν⋆

(

∇2W ⋆ −
2 cosψ

h⋆2
∂V ⋆

∂θ
−

cosψ

h⋆2
(U⋆ sinψ +W ⋆ cosψ)

)

, (4)
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is the Lapacian operator and h⋆ = x⋆ sinψ + z⋆ cosψ. Note that U = (U⋆, V ⋆,W ⋆) is the velocity flow field
and P ⋆ the fluid pressure.

At the edge of the boundary layer the dimensional surface velocity distribution (i.e. the slip velocity) along
the cone, U⋆

◦
(x⋆), is given by the well-known potential-flow solution discussed by, for instance, Rosenhead27

and Evans.28 It takes the power-law form

U⋆
◦
(x⋆) = C⋆x⋆m.

The value of the parameter m is related to the cone half-angle (for instance, m = 1 when ψ = 90◦ and
m = 0.1 when ψ = 27.72◦), and C⋆ is a scale factor determined by the free-stream axial flow incident on the
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rotating cone. This inviscid solution is a good representation of the real slip velocity, since the separated
boundary layer from the cone will tend to run parallel to the cone surface.

The appropriate boundary conditions are given by the slip and no-slip conditions at the edge of the
boundary layer and the cone surface, respectively. These are represented as

U⋆ = 0, V ⋆ = x⋆Ω⋆ sinψ, W ⋆ = 0 on z⋆ = 0,

U⋆ → U⋆
◦
(x⋆), V ⋆ → 0 as z⋆ → ∞.

The local axial-flow parameter Ts is defined as

Ts =
C⋆x⋆m

x⋆Ω⋆ sinψ
,

and is the ratio of the local slip velocity at x⋆ to the rotational speed of the cone surface at that location. It
is important to note that in the case of m 6= 1 (i.e. ψ 6= 90◦), Ts is dependent on the streamwise coordinate.
In effect this causes the solution originally proposed by Garrett & Peake21 to break down, as the equations
governing the mean-flow are a system of partial differential equations in terms of the normal and streamwise
coordinates. For this reason we appeal to a different method of solution which is similar to that used by
Koh & Price.29 We make a similarity-type transformation yielding the boundary-layer equations in terms
of the governing stream-function. This is achieved by making a Mangler transformation on the governing
equations. Suppose we define a new set of streamwise and surface-normal coordinates x̄⋆ and z̄⋆ respectively,
and corresponding velocities Ū⋆, V̄ ⋆ and W̄ ⋆ given by

x̄⋆ =
1

l⋆2

∫ x⋆

0

r⋆2
◦
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1
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◦
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◦
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)

, (5)

where l⋆ is a typical length scale in the streamwise direction. The resulting boundary-layer equations may
be derived in dimensional form using equations (1)–(4) and transformation (5), which leads to
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+
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=0, (6)
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where Ū⋆e (x̄⋆) = U⋆
◦
(x⋆) = C⋆x⋆m. Applying the same transformations to the boundary conditions leads to

Ū⋆ = 0, V̄ ⋆ = V̄w = ω⋆x̄⋆1/3, W̄ ⋆ = 0 on z̄⋆ = 0,

Ū⋆ → Ū⋆e = C̄⋆x̄⋆m/3, V̄ ⋆ → 0 as z̄⋆ → ∞,

where
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(
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.

We then use the following similarity-type transformation which involves the stream-function in the form
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3
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(
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6

Ū⋆e
ν⋆x̄⋆

)1/2

,

define the transformed coordinates for the system. The η1-coordinate represents the new surface-normal
coordinate scaled on displacement thickness according to the new velocity scales, whereas the s-coordinate
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represents the ratio of rotational flow with respect to oncoming axial flow, and is such that s−1/2 = Ts. The
velocities can now be expressed as

Ū⋆ =Ū⋆e
∂f

∂η1
(s, η1), V̄ ⋆ = V̄ ⋆wg(s, η1),

W̄ ⋆ = −

(

6

m+ 3
ν⋆x̄⋆Ū⋆e

)1/2 [(

1

2x̄⋆
+

1

2Ū⋆e

)

f +
ds

dx̄⋆
∂f

∂s
+
dη1
dx̄⋆

∂f

∂η1

]

.

These, together with equations (6)–(8), lead to the governing partial differential equations that govern the
laminar flow

f ′′′ + ff ′′ +
2m

m+ 3

(

1 − f ′2
)

+
2s

m+ 3

[

g2 + 2(1 −m)

(

f ′′
∂f

∂s
− f ′

∂f ′

∂s

)]

=0, (9)

g′′ + fg′ −
4

m+ 3
f ′g +

4(1 −m)s

m+ 3

(

g′
∂f

∂s
− f ′

∂g

∂s

)

=0. (10)

Note that a prime denotes differentiation with respect to η1. Equations (9)–(10) are subject the non-
dimensional boundary conditions

f = 0, f ′ = 0, g = 1 on η1 = 0,

f ′ → 1, g → 0 as η1 → ∞. (11)

In order to solve the system of equations numerically, we decompose them into a fifth-order system of
first-order PDEs. Solutions for s = 0 are obtained using a fourth-order Runge–Kutta integration method
with a Newton–Raphson searching routine to iterate on the boundary conditions at infinity. These initial
profiles are then integrated for non-zero s to obtain profiles for varying η1 and s using the commercial NAG
routine D03DEF. The same routine has previously been used by Garrett & Peake18–20 to obtain the basic
flow over the rotating sphere both with and without an imposed axial flow.

Convective and absolute instability are local concepts and the analyses presented later will require the
impulse response of the system to be determined within a parallel-flow-type approximation at a location
x⋆ = x⋆s along the surface of the cone. It is therefore appropriate to scale the steady velocities using the
local-surface velocity, x⋆sΩ

⋆ sinψ, as

U(η;xs, ψ) =
U⋆

x⋆sΩ
⋆ sinψ

, V (η;xs, ψ) =
V ⋆

x⋆sΩ
⋆ sinψ

, W (η;xs, ψ) =
W ⋆

(ν⋆Ω⋆)1/2
,

where η = z⋆/δ⋆ and xs = x⋆s/δ
⋆ are the non-dimensional distances scaled on the boundary-layer thickness

δ⋆ = (ν⋆/Ω⋆)1/2. This is consistent with the numerical stability analyses presented in the literature.18–21,23,24

Using this non-dimensionalization we note that

U = s−1/2 ∂f

∂η1
(η1, s), V = g(η1, s),

which are expressible in terms of the non-transformed normal coordinate η using the following coordinate
stretching for a fixed axial-flow parameter s

η1 = η

(

m+ 3

2s1/2
sinψ

)1/2

.

Figure 2 shows the resulting U - and V -components of the steady flow for a variety of values of s. We note
that these differ from those computed in Garrett & Peake’s previous absolute instability analysis, but are
considered to be more accurate. We see that as s increases the rotational effect dominates over the oncoming
axial flow and the streamwise profiles show an inflectional nature, overshooting before converging to the
inviscid solution at the edge of the boundary layer.
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Figure 2. Basic-flow profiles for ψ = 70◦ and s = 1, 2, 3, 4, 5, 10, 25, 400 and ∞, right to left for U and bottom to top for V .

II.B. Perturbation equations

We use non-dimensionalizing length, velocity, pressure and time scales δ⋆, r⋆
◦,sΩ

⋆, ρ⋆r⋆2
◦,sΩ

⋆2 and δ⋆/Ω⋆r⋆
◦,s

respectively. This leads to the local Reynolds number RL at x⋆s, where

RL =
x⋆sΩ

⋆δ⋆ sinψ

ν⋆
=
x⋆s sinψ

δ⋆
= xs sinψ = r◦,s.

The governing disturbance equations at location r◦,s are formed by perturbing the mean flow with quantities

(û, v̂, ŵ, p̂) = (u(η), v(η), w(η), p(η)) exp(i(αx+ βRLθ − γt)).

Physically, α is the disturbance wavenumber in the streamwise direction, β is the wavenumber in the az-
imuthal direction and γ is the disturbance frequency. The quantities α and γ are in general complex, as
required by the spatio-temporal analysis presented later. In contrast, in order to enforce periodicity round
the cone, n = βRL (identified as the number of vortices) must be interpreted at real integer values only.
Note that these perturbing quantities are slightly different to those used by Garrett & Peake through the
removal of a factor of sinψ multiplying α. This is a minor adjustment and makes the formulation consistent
with the more recent studies23,24 by the present authors.

Substitution of the perturbing quantities into the general form of the Navier–Stokes equations (1)–(4)
and non-dimensionalizing leads to the linear perturbation equations. These may be written as a set of six
first-order equations using the transformed variablesa:

φ1 = ᾱu+ βv, φ2 = ᾱDu+ βDv, φ3 = w,

φ4 = p, φ5 = ᾱv − βu, φ6 = ᾱDv − βDu,

aA typographical error has been noticed in21 in the definition of φ5,6.
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where D represents differentiation with respect to η and ᾱ = α− [i sinψ/R]s. These equations are

Dφ1 =φ2, (12)
[

Dφ2

RL

]

V

=
1

RL

([

α2 + β2
]

S
+ iRL (ᾱU + βV − γ)

)

φ1 +

[

Wφ2

RL

]

S

+

[

V

RL
β cosψ + ᾱDU + βDV

]

φ3

+ i
(

αᾱ+ β2
)

φ4 −

[

V sinψ

RL
φ5

]

S

+

[(

ᾱ
∂U

∂x
+ β

∂V

∂x

)

u−
sinψ

RL
(ᾱV − βU) v

]

S

, (13)

Dφ3 = − iφ1 −

[

φ3 cosψ

RL

]

S

, (14)

Dφ4 =

[

iWφ1

RL

]

S

−

[

iφ2

RL

]

V

−
1

RL

([

α2 + β2
]

S
+ iRL (αU + βV − γ) +DWS

)

φ3, (15)

Dφ5 =φ6, (16)
[

Dφ6

RL

]

S

=
1

RL

([

α2 + β2
]

V
+ iRL (ᾱU + βV − γ)

)

φ5 +

[

Wφ6

RL

]

S

+

[

V

RL
ᾱ cosψ + ᾱDV − βDU

]

φ3

+

[

β sinψ

RL
φ4

]

S

+

[

V sinψ

RL
φ1

]

S

+

[(

ᾱ
∂V

∂x
− β

∂U

∂x

)

u+
sinψ

RL
(ᾱU + βV ) v

]

S

, (17)

where the subscripts V and S indicate which of the O
(

R−1
L

)

terms arise from viscous and streamline-
curvature effects, respectively. Note that the perturbation quantities u and v appear explicitly in (12)–(17),
but can be expressed in terms of φ1 and φ5 via

u =
ᾱφ1 − βφ5

ᾱ2 + β2
, v =

ᾱφ5 + βφ1

ᾱ2 + β2
.

This formulation is such that the axial-flow parameter s only appears in the steady-flow equations. Equations
(12)–(17) reduce to Lingwood’s25 perturbation equations for the rotating disk (in an appropriate frame of
reference) when ψ = 90◦ and the basic-flow components are given by von Kármán’s similarity solution. The
perturbation equations differ from those stated by Garrett & Peake21 due to the different definition of α and
the acknowledgment that the basic-flow components are functions of both η and x.

In this preliminary investigation we present a study of the Orr–Sommerfeld (OS) equation for the cone
rotating in imposed axial flows. The governing fourth-order perturbation equation is obtained by neglecting
streamline-curvature effects in the full perturbation equations above. This leads to

[

i
(

D2 − k2
)2

+RL (αU + βV − γ)
(

D2 − γ2
)

−RL
(

αD2U + βD2V
)

]

φ3 = 0, (18)

where k2 = α2 + β2 is the effective wavenumber of the disturbance.
Analysis of the OS equation greatly simplifies the investigation as it removes the requirement for the nor-

mal velocity component W and derivatives with respect to the streamwise direction. Previous studies18,25,31

have shown that although the predicted onset of instability is underestimated and the relative importance of
the streamline-curvature mode (type II) is unable to be predicted, analysis of the Orr–Sommerfeld equation
leads to qualitatively correct predictions which increase in numerical accuracy as RL → ∞. This is further
discussed in §III.

Equations (12)–(17) use a parallel-flow-type approximation in which we ignore variation in the local
Reynolds number RL with local surface cross-sectional radius and assume that η/r◦ << 1. This involves
replacing the variable r◦ + η cosψ, which appears in the coefficients of the perturbation equations, by RL.
The resulting stability results are then strictly local, with location RL = r◦,s appearing as a parameter.
The assumption RL >> 1 (equivalent to δ⋆ << x⋆) necessarily prohibits analysis close to the apex where
RL = O(1). The implications of this approximation are discussed in §V.

III. Convective instability

In this section we solve the eigenvalue problem defined by the OS equation (18), with the homogeneous
boundary conditions

φi = 0, η = 0,

φi → 0, η → ∞,
(19)

7 of 15

American Institute of Aeronautics and Astronautics



where i = 1, 2 . . . 4. This eigenvalue problem will be solved for certain combinations of values of α, β and
γ at each Reynolds number, RL for a particular half-angle. From these we form the dispersion relation,
D(α, β, γ;RL, ψ) = 0, with the aim of studying the occurrence of convective instabilities. This allows a
discussion of the spatial branches of the dispersion relation before we study their pinching in the absolute
instability analysis of §IV. In each analysis the branches were calculated using a fourth-order Runge–Kutta
integrator with Gram–Schmidt orthonormalization and a Newton–Raphson linear search procedure.

Since we are supposing here that the flow is not absolutely unstable it follows that in the Briggs–Bers
procedure we can reduce the imaginary part of the frequency down to zero, so that γi = 0. To produce
the neutral curves for convective instability a number of approaches can be taken in this stationary frame
of reference. One approach is to insist that the vortices rotate at some fixed multiple of the cone surface
velocity, thereby fixing the ratio γr/β, and then α and β are calculated using a spatial analysis. This is
the approach taken here. In particular, we explicitly assume that the vortices rotate with the surface of the
cone (i.e. are stationary) so that γi = β, which is consistent with experimental observations discussed in §I.
As discussed by Corke & Knasiak,30 traveling modes can dominate on a highly polished rotating disk and
this is also likely to be the case over a highly polished broad rotating cone. However, we are particularly
interested in practical engineering applications where highly polished surfaces will not be found.

III.A. Cone rotating in otherwise still fluid and disk rotating in axial flow

In publication23 the present authors give the convective instability analysis for a family of cones rotating
in an otherwise still fluid. An appropriate version of the full system of perturbation equations (12)–(17) is
used, and both numerical and asymptotic approaches are taken. Furthermore the equivalent analysis for a
disk placed in an enforced axial flow is contained in publication.24 The interested reader is therefore referred
to those publications in the limiting cases of s → ∞ for all ψ and ψ = 90◦ for all s. We now proceed to
present an analysis for non-zero axial flow incident on rotating cones (i.e. finite s and ψ 6= 90◦.)

III.B. Cone rotating in uniform axial flow

One spatial branch was found to determine the convective instability characteristics in the OS analysis for
each half-angle considered for each axial-flow rate. This branch arises from the crossflow (type I) instability
mode and is identical to that discussed in related publications.19,20,31 It is known that this mode arises
from the inflectional nature of the streamwise mean velocity component U . Previous investigations of related
boundary layers have also noted the appearance of a streamline curvature (type II) instability mode. This
corresponds to a centrifugal instability associated with the way in which the outer-flow streamlines are curved
by an O

(

R−1
L

)

amount close to the outer edge of the boundary layer. However, since streamline-curvature
effects have been removed in this preliminary investigation of the OS equation, the type II mode does not
arise.

Figure 3 shows the neutral curves in the (RL, αr)-, (RL, β)-, (RL, kδ)- and (RL, ǫ)-planes for ψ = 70◦

for a variety of values of s. Note that kδ =
√

α2 + β2/ sinψ is the modified wavenumber and ǫ =
arctan(β sinψ/αr) is the modified waveangle of the disturbances. Although the introduction of the fac-
tor sinψ appears arbitrary here, it arises from the formulation of the asymptotic study (not presented here)
and enables comparison with the previous numerical and asymptotic investigations23,24 (the interested reader
is referred to those publications for more details). The neutral curves are determined by setting γi = 0 (i.e.
a neutral disturbance) and γr = β (i.e. to guarantee stationary disturbances) and for each RL the dispersion
relation is then solved to return a pair of values (αr, β) for each neutral mode. As can be seen in Figure
3, the value of β varies continuously, although of course only values of β are allowed such that n is integer.
Inside each loop of the neutral curves the flow is convectively unstable.

Figure 3 clearly demonstrates that axial flow has a stabilizing effect on the rotating-cone boundary layer
by increasing the critical Reynolds number for the onset of instability. It is also clear that the range of
waveangles that the spiral vortices are predicted to exist is narrowed with increased axial flow. Table 1 lists
the critical values of RL, xL = RL/ sinψ, vortex angle and number of vortices at the onset of convective
instability at each axial flow rate and half-angle studied using the Orr–Sommerfeld formulation.

Unfortunately experimental results9,17 for rotating cones in axial flow exist only for ψ = 15◦. It is
therefore possible to compare our calculations for ψ = 70◦ and 50◦ only qualitatively with these studies.
Agreement is found with the general trend that axial flow delays the onset of spiral vortices and increases
their waveangle.
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Figure 3. Orr–Sommerfeld neutral curves for convective instability of stationary vortices for ψ = 70◦ with s =
∞, 400, 25, 10 & 5, arrow indicates direction of decreasing s (i.e. increasing axial flow).

In order to compare the onset of convective instability at each s between both values of ψ, it is sensible
to use xL = RL/ sinψ (the non-dimensional distance along the cone surface). Table 1 shows that the onset
of convective instability occurs further along the 50◦-cone than the 70◦-cone for each value of Ts. However,
it is clear from the definition of the axial-flow parameter that equal values of Ts for both values of ψ does not
translate as equal incident axial-flow rates. This is due to the appearance of m which depends on ψ. Care
must therefore be taken in making such comparisons. The interpretation of such comparisons is discussed
further by Garrett18 and Garrett & Peake.21 We are able to conclude that the critical values of the 50◦-cone
appear to more sensitive to the values of Ts than the 70◦-cone.

In order to discuss the relative importance of the type I and type II modes of instability it is necessary
to consider the full perturbation system of equations (12)–(17), which is not done here. For the related
boundary-layer flows over rotating spheres and disks, Garrett & Peake20 and the present authors23 find that
increased axial flow increases the importance of the type II (streamline curvature) mode until it becomes
the most dangerous below a certain value of s. The suggestion that increased axial flow would emphasize
the streamline-curvature mode is also sensible in this geometry. In particular, Figure 2 shows that axial flow
increases the amount of fluid entrained into the boundary layer, which would clearly lead to more streamline
curvature. It is also expected that this will occur on rotating cones of other half angles. Physically, it
is suggested that axial flow effectively sweeps any instabilities arising from, say, surface roughness further
downstream, causing the location of transition to retreat downstream also. Therefore axial flow has a
stabilizing effect on convective instabilities.

Figure 4 demonstrates the implications of using the OS equation (18) instead of the full perturbation
equations (12)–(17) for a cone with ψ = 70◦ rotating in an otherwise still fluid. This is done by plotting
neutral curves as in Figure 3, but calculated from each system of equations. In each plot we see a marked
difference in the behaviour close to the critical value of RL, most notably in that the two-lobed structure
does not exist in the OS analysis, but also that the critical values of RL are lower in the OS analysis. As
RL increases, excellent agreement is obtained in the upper-branch calculations in the (RL, αr)-, (RL, β)-
and (RL, kδ)-planes and good agreement is obtained in the lower branches. In the (RL, ǫ)-plane excellent
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ψ = 70◦ ψ = 50◦

s Ts RL xL ǫ n RL xL ǫ n

∞ 0 175.5 186.8 9.2◦ ∼ 10 158.5 206.9 7.6◦ ∼ 8

10,000 0.01 265.6 282.6 13.2◦ ∼ 27 272.1 355.2 10.6◦ ∼ 29

400 0.050 289.4 308.0 14.2◦ ∼ 34 296.2 386.7 11.5◦ ∼ 36

25 0.200 432.1 459.8 18.6◦ ∼ 85 433.6 566.0 12.1◦ ∼ 88

10 0.316 594.1 632.2 22.0◦ ∼ 170 588.1 767.7 18.0◦ ∼ 175

5 0.447 819.7 872.3 25.6◦ ∼ 360 803.1 1048.4 21.0◦ ∼ 360

Table 1. Critical parameters at the onset of convective instability for a range of axial-flow rates.

agreement is obtained in the lower branch (which corresponds to the upper branch of the other plots) but the
discrepancy in the predicted upper-branch waveangle is more noticeable (although this is partly to do with
the log-scalings used in the other plots). The waveangle and wavenumber plots also show the comparison
with the asymptotic predictions. Figure 4 therefore demonstrates that the results from this preliminary OS-
analysis are expected to be quantitatively close to those arising from the full system. However, the relative
importance of the type I and type II modes (as determined by the two lobed structure) cannot be investigated
under the OS formulation, as mentioned above. Both the full-system numerics and the asymptotic plots in
Figure 4 are due to the present authors.23 For comparison with the data in Table 1, the critical parameters
at the onset of convective instability arising from the full system of equations for ψ = 70◦ and s = ∞ are
RL ≈ 277, ǫ = 11◦ and n ∼ 21; and for ψ = 50◦ and s = ∞ are RL ≈ 249, ǫ = 9◦ and n ∼ 16.

10
2

10
4

10
6

0

10

20

30

40

R
L

ε

10
2

10
4

10
6

10
−4

10
−2

10
0

R
L

k δ

10
2

10
4

10
6

10
−4

10
−2

10
0

R
L

α

10
2

10
4

10
6

10
−4

10
−2

10
0

R
L

β

Figure 4. Comparison of Orr–Sommerfeld neutral curves (-.) with full-perturbation-system neutral curves (-) and the
asymptotics (· · ·) for the convective instability of stationary disturbances over a cone rotating in otherwise still fluid
(s → ∞) (ψ = 70◦).
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IV. Absolute instability

We now solve the OS eigenvalue problem with the aim of studying the occurrence of absolute instability.
The Briggs–Bers method is used to detect an absolutely-unstable response to the initial perturbation of the
form δ(r−rs)δ(t)e

iβθ. For absolute instability to occur we need to locate a pinch point (α◦, γ◦), formed by the
coalescence between two spatial branches which originate from distinct half-α-planes when γi is sufficiently
large and positive. The flow is then absolutely unstable if γi > 0 at the pinch point, and is otherwise at
worst convectively unstable.

A pinch point has indeed been found for each half-angle ψ and flow parameter s, which is unstable for
sufficiently large RL. The pinch for a particular set of parameter values is shown in Figure 5 where the
characteristic exchange of branches can be seen. This pinching behaviour is consistent with that previously
found on related geometries.18–22,25,26 By monitoring the behaviour of the two spatial branches as the
Reynolds number is varied, it is possible to determine the critical value of RL for the onset of absolute
instability. As Lingwood25 and Garrett & Peake19,20 have demonstrated with previous analyses of the
OS/full system of perturbation equations, the pinch is formed by the coalescence of two branches which are
inviscid in origin. One is the convectively unstable type I branch and the other is a convectively stable branch
(typically denoted type III). Existence of a pinch in this current OS analysis would therefore demonstrate
that the rotating-cone boundary layer is absolutely unstable in axial flow, although the predicted onset
will be quantitatively different to that predicted by the more accurate full-perturbation system. As with
the convective instability case, the extent of the discrepancy can be judged by plotting neutral curves for
absolute instability for a cone rotating in otherwise still fluid. Figure 6 demonstrates the implications of
using the OS equation (18) instead of the full perturbation equations (12)–(17) for a cone with ψ = 70◦

rotating in an otherwise still fluid in terms of the (RL, αr)-, (RL, αi)-, (RL, β)- and (RL, γr)-planes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

α
r

α i

Figure 5. Branches of type 1 and type 3 for ψ = 70◦ and s = 10, 000 for RL = 3, 000, β = 0.26 and γi = 0.0025 (solid
line), γi = 0.01 (dashed line) & γi = −0.005 (dotted line), arrows indicated direction of increasing γr. The pinch point is
indicated by the cross.

IV.A. Cone rotating in otherwise still fluid and disk rotating in axial flow

Garrett & Peake21 give the results of absolute-instability analyses for a family of cones rotating in a range
of axial flows. They use the full system of perturbation equations. As discussed above, this current paper
uses more accurate basic-flow profiles for non-zero axial flow imposed on rotating cones and so the results
are intended to replace those previously published. However, the basic flows obtained using the methods
detailed in §II.A are identical to those obtained previously for zero axial flow (Ts = 0, s→ ∞) for all ψ and
for Ts 6= 0 when ψ = 90◦. The existing results for these cases are therefore unchanged and the interested
reader is referred to Garrett & Peake.21
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Figure 6. Comparison of Orr–Sommerfeld neutral curves (· · ·) with full-perturbation-system neutral curves (-) for
absolute instability of a cone rotating in otherwise still fluid (s → ∞) for ψ = 70◦.

IV.B. Cone rotating in uniform axial flow

Figure 7 shows neutral curves for absolute instability when ψ = 70◦ in terms of the (RL, αr)-, (RL, αi)-,
(RL, β)- and (RL, γr)-planes at s =10000, 1000, 400, 100 and 50. The most striking feature of this figure is
the sensitivity of absolute instability to axial flow. For example, the onset of convective instability is delayed
from RL ≈ 176 to 289 as the imposed axial flow is increased from s = ∞ (Ts = 0) to s = 400 (Ts = 0.05); this
represents an increase of around 60%. However, the onset of absolute instability is increased from RL ≈ 407
to 2279 over the same range of s; this is an increase of around 460%. For this reason the figure shows the
neutral curves over a much shorter range of axial-flow parameters.

Table 2 lists the critical values of RL and xL for the onset of absolute instability at each axial flow rate
and half-angle studied using the Orr–Sommerfeld formulation. For comparison, the results obtained from
the full perturbation system for cones rotating in zero axial-flow are RL ≈ 490 for ψ = 70◦ and RL ≈ 441
for ψ = 50◦. As with ψ = 70◦, the onset of absolute instability over the 50◦-cone is seen to be very sensitive
to axial flow. As with the onset of convective instability, the delayed onset of absolute instability with Ts
for ψ = 50◦ is more sensitive than for ψ = 70◦.

V. Conclusion

In this paper we have used an Orr–Sommerfeld analysis to show that the boundary layer over a broad
cone (ψ > 40◦) rotating in an imposed axial flow is both convectively and absolutely unstable. The onset
of both instabilities are delayed with increased Ts (i.e. decreased s) and the critical position for onset (as
measured along the surface of the cone) is delayed with decreased ψ.

We have made use of a parallel-flow-type approximation by assuming that factors 1 + η cosψ/RL can
be replaced by unity. We are careful to point out that this approximation would imply that the resulting
perturbation equations are not consistent to O

(

R−1
L

)

, the same order as the viscous and streamline curva-
ture effects. Therefore, whether using the Orr–Sommerfeld equation (18) or the full perturbation equations
(12)–(17), the solutions cannot be justified rigorously at finite RL. It is the authors’ opinion that this
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Figure 7. Orr–Sommerfeld neutral curves for absolute instability of a cone rotating in otherwise still fluid (s → ∞) for
ψ = 70◦. Curves are shown for s = 10000, 1000, 400, 100 and 50 from left to right (i.e. increasing axial flow).

approximation will not affect the conclusions presented here. In particular, studies into the convective insta-
bility of related boundary layers by the present authors23,24 also use this approximation and all numerical
results are verified by rigorous asymptotic investigations at high RL. Furthermore, absolute instability is
known to arise from inviscid modes which are observable in the purely inviscid and rigorous analysis of the
Rayleigh equation obtained by neglected both streamline curvature and viscous terms from the full system of
perturbation equations. However, we do acknowledge that the results presented here will be subject to quan-
titative inaccuracies as a result of the approximation. A full discussion of the impact of the approximation
is intended for a future paper where the complementary asymptotic study will be presented.

Unfortunately no experimental results for cones rotating in imposed axial flows are available for com-
parison at half-angles greater than ψ = 15◦. This means that quantitative comparisons of both the onset
of spiral vortices (against convective instability) and the onset of turbulence (against absolute instability)
cannot be made. Compiling the numerical codes for ψ = 15◦ would not be useful as this investigation is
formulated to study crossflow instabilities, rather than the hypothesized Görtler modes on slender cones.

The results of this paper are restricted to local-linear stability. The question of the global-linear stability
of the rotating disk was first investigated by Davies & Carpenter,32 who use a numerical simulation to
demonstrate that the global mode associated with the local absolute instability is damped. This has also
been theoretically verified in the preliminary study of Garrett & Peake22 for the boundary layers on disks and
cones rotating in otherwise still fluids. It is therefore also likely to be case when axial flow is incident on the
rotating cone. Note however that this does not imply that absolute instability is not involved in transition.
In order to see this one must include nonlinearity: Pier et al.33,34 have shown that a self-excited, nonlinear
global mode will always exist in the presence of a region of local absolute instability. This is in contrast to
linear theory, since publications22,32 have demonstrated that the region of local absolute instability on the
disk is not sufficient to support an unstable linear global mode. Pier35 has further shown that this nonlinear
global mode can undergo secondary instability very close to the convective-absolute boundary, providing a
possible route to turbulence. The global behaviour needs to be investigated for the rotating-cone boundary
layer both with and without an imposed axial flow.
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ψ = 70◦ ψ = 50◦

s Ts RL xL RL xL

∞ 0 406.4 432.5 368.0 480.4

10000 0.010 1792.9 1908.0 1669.4 2179.2

1000 0.032 2033.9 2164.4 1891.2 2468.8

400 0.050 2278.8 2425.0 2116.2 2762.5

100 0.100 3180.5 3384.6 2947.3 3847.4

50 0.141 4301.0 4577.0 3982.3 5198.5

25 0.200 6882.5 7324.2 6372.4 8318.6

Table 2. Critical parameters at the onset of absolute instability for a range of axial-flow rates.

In all papers in this series an incompressible boundary layer has been assumed and methods from linear-
stability theory applied. Although the assumption of incompressibility is reasonable for many aeroengine
applications, it is not for the high-speed aerodynamic and CVD applications discussed in §I. The investi-
gations performed so far, although important in a theoretical context, must be considered as preliminary
investigations with regards to such applications. Further work is therefore intended to study the effects of
compressibility on the instability modes discussed. Work is also underway to clarify the transition mecha-
nisms on slender cones.
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