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Abstract 66 

 67 

Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and 68 

biogeographic patterns remain poorly understood. By using DNA metabarcoding data from 69 

hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled 70 

from plant diversity. The plant-to-fungus richness ratio declines exponentially towards the 71 

poles, indicating strong biases in previous fungal diversity estimates. Climatic factors, 72 

followed by edaphic and spatial variables, constitute the best predictors of fungal richness and 73 

community composition at the global scale. Fungi follow general biogeographic patterns 74 

related to latitudinal diversity gradients but with several notable exceptions. These findings 75 

significantly advance our understanding of fungal diversity patterns at the global scale and 76 

permit integration of fungi into a general macro-ecological framework. 77 

 78 

 79 

One-sentence summary 80 

 81 

A massive, global-scale metagenomic study detects hotspots of fungal diversity and 82 

macroecological patterns, and indicates that plant and fungal diversity are uncoupled. 83 

 84 

  85 
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INTRODUCTION: The kingdom Fungi is one of the most diverse groups of organisms on 86 

Earth and they are integral ecosystem agents that govern soil carbon cycling, plant nutrition, 87 

and pathology. Fungi are widely distributed in all terrestrial ecosystems, but the distribution of 88 

species, phyla, and functional groups has been poorly documented. Based on 365 global soil 89 

samples from natural ecosystems, we determined the main drivers and biogeographic patterns 90 

of fungal diversity and community composition. 91 

RATIONALE: We identified soil-inhabiting fungi using 454 pyrosequencing and comparison 92 

against taxonomically and functionally annotated sequence databases. Multiple regression 93 

models were used to disentangle the roles of climatic, spatial, edaphic, and floristic parameters 94 

on fungal diversity and community composition. Structural equation models were used to 95 

determine the direct and indirect effects of climate on fungal diversity, soil chemistry and 96 

vegetation. We also examined if fungal biogeographic patterns matched paradigms derived 97 

from plants and animals — namely, that species’ latitudinal ranges increase towards the poles 98 

(Rapoport’s rule) and diversity increases towards the equator. Finally, we sought group-99 

specific global biogeographic links among major biogeographic regions and biomes using a 100 

network approach and area-based clustering. 101 

RESULTS: Metabarcoding analysis of global soils revealed fungal richness estimates 102 

approaching the number of species recorded to date. Distance from equator and mean annual 103 

precipitation had the strongest effects on richness of fungi including most fungal taxonomic 104 

and functional groups. Diversity of most fungal groups peaked in tropical ecosystems, but 105 

ectomycorrhizal fungi and several fungal classes were most diverse in temperate or boreal 106 

ecosystems and many fungal groups exhibited distinct preferences for specific edaphic 107 

conditions (e.g. pH, calcium, phosphorus). Consistent with Rapoport´s rule, the geographic 108 



6 
 

range of fungal taxa increased toward the poles. Fungal endemicity was particularly strong in 109 

tropical regions, but multiple fungal taxa had cosmopolitan distribution. 110 

CONCLUSIONS: Climatic factors, followed by edaphic and spatial patterning, are the best 111 

predictors of soil fungal richness and community composition at the global scale. Richness of 112 

all fungi and functional groups is causally unrelated to plant diversity with the exception of 113 

ectomycorrhizal root symbionts, suggesting that plant-soil feedbacks do not influence the 114 

diversity of soil fungi at the global scale. The plant-to-fungi richness ratio declined 115 

exponentially towards the poles, indicating that current predictions assuming globally constant 116 

ratios overestimate fungal richness by 1.5-2.5-fold. Fungi follow similar biogeographic 117 

patterns as plants and animals with the exception of several major taxonomic and functional 118 

groups that run counter to overall patterns. Strong biogeographic links among distant 119 

continents reflect relatively efficient long-distance dispersal compared with macro-organisms. 120 

 121 

Figure caption 122 

Direct and indirect effects of climatic and edaphic variables on plant and fungal richness. 123 

Line thickness corresponds to relative path coefficients. Dashed lines indicate negative 124 

relationships. Abbreviations: MAP, mean annual precipitation; Fire, time since last fire. 125 

 126 
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Introduction 127 

 128 

Fungi are eukaryotic microorganisms that play fundamental ecological roles as decomposers, 129 

mutualists, or pathogens of plants and animals; they drive carbon cycling in forest soils, 130 

mediate mineral nutrition of plants, and alleviate carbon limitations of other soil organisms. 131 

Fungi comprise some 100,000 described species (accounting for synonyms), but the actual 132 

extent of global fungal diversity is estimated at 0.8 to 5.1 million species (1).  133 

Globally, the biomass and relative proportions of microbial groups, including fungi, co-134 

vary with the concentration of growth-limiting nutrients in soils and plant tissues. Such 135 

patterns suggest that the distribution of microbes reflects latitudinal variation in ecosystem 136 

nutrient dynamics (2-4). Richness of nearly all terrestrial and marine macro-organisms is 137 

negatively related to increasing latitude (5) — a pattern attributed to the combined effects of 138 

climate, niche conservatism, and rates of evolutionary radiation and extinction (6). Although 139 

morphological species of unicellular microbes are usually cosmopolitan (7), there is growing 140 

evidence that the distribution of micro-organisms is shaped by macro-ecological and 141 

community assembly processes (8). Only a few of these biogeographic processes have been 142 

demonstrated for fungi at the local scale (9). Despite their enormous diversity and importance 143 

in ecosystem function, little is known about general patterns of fungal diversity or functional 144 

roles over large geographic scales. Here we use a global dataset to disentangle the roles of 145 

climatic, edaphic, floristic, and spatial variables governing global-scale patterns of soil fungal 146 

diversity. We also address macro-ecological phenomena and show that fungi largely exhibit 147 

strong biogeographic patterns that appear to be driven by dispersal limitation and climate.  148 
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 149 

Materials and Methods 150 

 151 

Sample preparation 152 

We collected 40 soil cores from natural communities in each of 365 sites across the world 153 

using a uniform sampling protocol (Fig. 1A; Data S1). Most plots (2500 m
2
) were circular, but 154 

in steep mountain regions and densely forested areas, some plots were oblong. We randomly 155 

selected twenty trees located at least 8 m apart. In two opposite directions, 1-1.5 m from each 156 

tree trunk, loose debris was removed from the forest floor. PVC tubes (5 cm diam.) were 157 

hammered into the soil down to 5 cm depth. These soil cores almost always included fine roots 158 

and comprised both the organic layer and top mineral soil. Although deep soil may contain 159 

some unique organisms adapted to anoxic conditions or low nutrient levels, our sampling was 160 

limited to topsoil for the following reasons. First, in the vast majority of soil types, >50% of 161 

microbial biomass and biological activity occur in the topmost organic soil layer. Second, 162 

deeper sampling was impossible in shallow, rocky soils or those with high clay concentrations 163 

and hardpans. Third, differences among soil horizons may be masked by other variables across 164 

large geographic scales (10). The 40 soil cores taken in each site were pooled, coarse roots and 165 

stones removed, and a subset of the soil was air-dried at <35 °C. Dried soil was stored in zip-166 

lock plastic bags with silica gel to minimize humidity during transit. In the laboratory, dried 167 

soil was ground into fine powder using bead beating. 168 

DNA was extracted from 2.0 g of soil using the PowerMax Soil DNA Isolation kit 169 

(MoBio, Carlsbad, CA USA) following manufacturer’s instructions. PCR was performed using 170 

a mixture of six forward primers (in equimolar concentration) analogous to ITS3 and a 171 



9 
 

degenerate reverse primer analogous to ITS4 (hereafter referred to as ITS4ngs). Forward and 172 

reverse primers were shortened and modified to completely match >99.5% of all fungi (except 173 

ca. 60% of Tulasnellaceae that exhibit highly divergent 5.8S rDNA and Microsporidia that 174 

exhibit re-arrangements in ribosomal DNA; Table S1). The ITS4ngs primer was tagged with 175 

one of 110 identifiers (MIDs, 10-12 bases) that were modified from those recommended by 176 

Roche to differ by >3 bases, start only with adenosine, and consist of between 30-70% 177 

adenosine and thymidine in order to optimize the adapter ligation step. The PCR cocktail 178 

consisted of 0.6 μl DNA extract, 0.5 μl each of the primers (20 pmol), 5 μl 5xHOT FIREPol 179 

Blend Master Mix (Solis Biodyne, Tartu, Estonia), and 13.4 μl double-distilled water. PCR 180 

was carried out in four replicates using the following thermocycling conditions: an initial 15 181 

min at 95 °C, followed by 30 cycles at 95 °C for 30 s, 55 °C for 30 s, 72 °C for 1 min, and a 182 

final cycle of 10 min at 72 °C. PCR products were pooled and their relative quantity was 183 

estimated by running 5 μl amplicon DNA on 1% agarose gel for 15 min. DNA samples 184 

yielding no visible band were re-amplified using 35 cycles in an effort to obtain sufficient PCR 185 

product, whereas samples with a very strong band were re-amplified with only 25 cycles. It is 186 

important to use as few cycles as possible to minimize chimera formation and to be able to 187 

interpret sequence abundance in a semiquantitative manner (11). We used negative (for DNA 188 

extraction and PCR) and positive controls throughout the experiment. Amplicons were purified 189 

with Exonuclease I and FastAP thermosensitive alkaline phosphatase enzymes (Thermo 190 

Scientific, Pittsburgh, PA USA). Purified amplicons were subjected to quantity normalization 191 

with a SequalPrep Normalization Plate Kit (Invitrogen, Carlsbad, CA, USA) following 192 

manufacturer’s instructions. Normalized amplicons were divided into five pools that were 193 

subjected to 454 adaptor ligation, emulsion PCR, and 454 pyrosequencing using the GS-FLX+ 194 
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technology and Titanium chemistry as implemented by Beckman Coulter Genomics (Danvers, 195 

MA, USA). 196 

 197 

Bioinformatics 198 

Pyrosequencing on five half-plates resulted in 2,512,068 reads with a median length of 409 199 

bases. The sequences were re-assigned to samples in mothur 1.32.2 (www.mothur.org) based 200 

on the barcodes and then trimmed (parameters: minlength=300; maxambigs=1; 201 

maxhomop=12; qwindowaverage=35; qwindowsize=50; bdiffs=1) to exclude short and low-202 

quality sequences, resulting in 2,231,188 high quality sequences. We used ITSx 1.0.7 203 

(http://microbiology.se/software/itsx) to remove the flanking 5.8S and 28S rRNA genes for 204 

optimal resolution of ITS2 clustering and removal of compromised and non-target sequences. 205 

As a filter to remove most of the partial sequences we retained only sequences >99 bp in 206 

length. Chimera control was exercised through UCHIME 4.2 (www.drive5.com/uchime/). 207 

After these filtering steps, 1,397,679 sequences were retained and further clustered at 90.0% 208 

and 95.0-99.0% sequence similarity thresholds (12) as implemented in CD-Hit 4.6.1 (www.cd-209 

hit.org). Clustering revealed 37,387, 59,556, 66,785, 77,448, 94,255, and 157,956 taxa based 210 

on 90.0%, 95.0%, 96.0%, 97.0%, 98.0%, and 99.0% sequence similarity thresholds, 211 

respectively. The longest sequence of each Operational Taxonomic Unit (OTU), based on 212 

clustering at 98.0% sequence similarity, was selected as the representative for BLASTn 213 

searches (word size=7; penalties: gap=-1; gap extension=-2; match=1) against the International 214 

Nucleotide Sequence Databases Collaboration (INSDC: www.insdc.org) and UNITE 215 

(unite.ut.ee) databases. In addition, we ran BLASTn searches against established reference 216 

sequences of all fungi in 99.0% similarity clusters that include third-party taxonomic and 217 

http://microbiology.se/software/itsx
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metadata updates (12) as implemented in the PlutoF workbench (13). For each query, we 218 

considered the 10 best-matching references to annotate our global sequences as accurately as 219 

possible. If no reliable taxon name was available, we ran manual BLASTn searches against 220 

INSDC with 500 best matching sequences as output. We typically relied on 90%, 85%, 80%, 221 

and 75% sequence identity as a criterion for assigning OTUs with names of a genus, family, 222 

order, or class, respectively. Sequence identity levels were raised in subsets of 223 

Sordariomycetes, Leotiomycetes, and Eurotiomycetes, because these taxa contain multiple 224 

genera and families that have unusually conserved ITS sequences. As a rule, we considered e-225 

values of BLASTn search results ˂e
-50

 reliable to assign sequences to the fungal kingdom, 226 

whereas those >e
-20

 were considered ´unknown´. E-values between e
-20

 and e
-50

 were manually 227 

checked against the 10 best matches for accurate assignment. We followed INSDC for higher-228 

level taxonomy of eukaryotes (14) and the Index Fungorum (www.indexfungorum.org) for 229 

species through class-level taxonomy of fungi. Our group of taxonomic experts assigned each 230 

fungal genus, family, or order to functional categories (Data S2). If different functional 231 

categories were present within a specific genus, we chose the dominant group (>75% of 232 

species assigned to a specific category) or considered its ecology unknown (˂75% of species 233 

assignable to a single category). All Glomeromycota were considered to be arbuscular 234 

mycorrhizal (AM). Taxa were considered to be ectomycorrhizal (EcM) if they best matched 235 

any sequences of known EcM lineages (15) and exhibited sequence length / BLASTn scores 236 

above lineage-specific thresholds. For several taxonomic groups, we constructed phylogenetic 237 

trees to assess the performance of clustering, sequence quality of singletons, accuracy of OTU 238 

separation, and taxonomic assignments (Fig. S1). In the course of this project, we provided 239 

http://www.indexfungorum.org/


12 
 

10,232 third-party taxonomic re-annotations to INSDC sequences to improve subsequent 240 

identification of fungal sequences and made these available through the UNITE database. 241 

 242 

Statistical analyses 243 

Estimates of the mean annual temperature (MAT), mean annual precipitation (MAP), soil 244 

moisture, and soil carbon at 30 arc second resolution were obtained from the WorldClim 245 

database (www.worldclim.org). Estimates of potential evapotranspiration (PET) and net 246 

primary productivity (NPP) at 30 arc minute resolution were obtained from the Atlas of the 247 

Biosphere (www.sage.wisc.edu/atlas/maps.php). Variation coefficients for MAT and MAP 248 

were computed based on the average monthly values to represent seasonality of temperature 249 

and precipitation. We also calculated the difference of MAP to PET to evaluate the effect of 250 

rainfall surplus or deficit. Based on vegetation type and geographical distribution, sites were 251 

categorized into biogeographic regions and biomes following the classification of the World 252 

Wildlife Foundation (http://worldwildlife.org) with a few exceptions: i) temperate deciduous 253 

forests in the Northern and Southern hemispheres were treated separately; ii) tropical montane 254 

forests (>1500 m elevation) were separated from the tropical lowland moist forests; and, iii) 255 

grasslands and shrublands of all geographic origins were pooled. At each site, we also 256 

determined the age of vegetation, time since the last fire, and EcM plant species along with 257 

their relative contribution to stand basal area. EcM plants are usually conspicuous trees or 258 

prominent shrubs that are relatively easy to identify and their mycorrhizal status is verifiable in 259 

the field using root excavation and microscopy. Complete lists of tree species were available 260 

for <10% of the sites, so we did not directly include plant community composition parameters 261 

in our analyses (but see below). 262 

http://www.worldclim.org/
http://www.google.com/url?q=http%3A%2F%2Fwww.sage.wisc.edu%2Fatlas%2Fmaps.php&sa=D&sntz=1&usg=AFQjCNGpadn0VhggSmZVxduSyQ74kTaHzA
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Concentrations of N, C, 
13

C/
12

C, and 
15

N/
14

N were determined from 1-20 mg of soil 263 

using GC-combustion coupled to isotope-ratio mass spectrometry (16). Concentrations of soil 264 

calcium, potassium, magnesium, and phosphorus were determined as in Tedersoo et al. (16). 265 

Soil pH was measured in 1 N KCl solution. 266 

For analyses of fungal richness, we calculated residuals of OUT richness in relation to 267 

the square root of the number of obtained sequences to account for differences in sequencing 268 

depth. This method outperformed the commonly used rarefaction to the lowest number of 269 

sequences method, which removes most of the data (17). We also calculated the richness of 270 

major class-level taxonomic and functional groups (comprising >100 OTUs). We excluded 271 

outlying samples dominated by a few OTUs of molds, which are indicative of poor sample 272 

preservation (relative abundance of sequences belonging to Trichocomaceae >5%, 273 

Mortierellaceae >20%, or Mucoraceae >20%, that exceeded three times the mean + standard 274 

deviation). Although these samples were fairly homogeneously distributed across the world, 275 

they had conspicuously lower fungal richness. We also excluded samples that yielded less than 276 

1200 sequences per sample. 277 

To determine the relationship between plant and fungal richness, we relied on co-278 

kriging values from the global vascular plant species richness dataset (18), which covered 279 

96.7% of our sites. These scale-free values of plant richness were then regressed with residuals 280 

from the best fit models for fungal richness and fungal functional groups. We further calculated 281 

the ratio of relative plant richness to fungal richness and fitted this ratio with latitude using 282 

polynomial functions to test the assumed uniformity of plant-to-fungal richness ratios at the 283 

global scale (1, 19, 20). To account for potential latitudinal biases in plant-to-fungal diversity 284 

estimates, we took into account the non-uniform distribution of land surfaces by calculating an 285 
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Inverse Distance Weighting (IDW) spatial interpolation of standardized ratios of plant-to-286 

residual fungal diversity using the gstat package in R (21). We then used IDW to interpolate 287 

total fungal diversity beyond sampling sites, by accounting for MAP as based on the best-288 

fitting multiple regression model. 289 

Distance from the equator, altitude, age of vegetation, time since last fire, climatic 290 

variables, and concentrations of nutrients were log-transformed prior to analyses to improve 291 

the distribution of residuals and reduce non-linearity. To account for potential autocorrelation 292 

effects, we calculated spatial eigenvectors using SAM ver. 4 (22). To determine the best 293 

predictors of global fungal diversity, we included edaphic, climatic, floristic, and spatial 294 

variables in multiple regression models. Due to the large number of predictors, we pre-selected 295 

16 candidate predictors that were revealed by exploratory multiple linear and polynomial 296 

regression analyses, based on coefficients of determination and forward selection criteria. The 297 

most parsimonious models were determined based on the corrected Akaike information 298 

criterion (AICc), which penalizes over-fitting. Finally, components of the best models were 299 

forward-selected to determine their relative importance as implemented in the packfor package 300 

in R. 301 

To test the direct effects of climatic variables on richness of fungi and their functional 302 

groups, and indirect climatic effects (via soil nutrients and vegetation), we used Structural 303 

Equation Modeling (SEM) in Amos ver. 22 (SPSS Software, Chicago, IL, USA). Model fits 304 

were explored based on both chi-square test and Root Mean Square Error of Approximation 305 

(RMSEA). First, we included all potentially important variables (inferred from both the 306 

multiple regression models and correlations for individual response variables to construct 307 

separate SEM models. We tested all direct and indirect relations between exogenous and 308 
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endogenous variables including their error terms. Then, we used backward elimination to 309 

remove non-significant links to maximise whole model fit. Finally, we combined the obtained 310 

SEM models in a unified path model, following the same elimination procedure. 311 

In addition to full models, we specifically tested the relationships between OTU 312 

richness and distance from the equator and soil pH, because these or closely related variables 313 

were usually among the most important predictors. For these analyses, we calculated residuals 314 

of richness that accounted for other significant variables of the best models. To address non-315 

linear relationships, we fitted up to fifth order polynomial functions and selected best fit 316 

models based on AICc values.  317 

The relative effects of climatic, edaphic, spatial, and floristic variables on the total 318 

fungal community composition and on particular functional groups were determined using 319 

Hellinger dissimilarity (calculated if >90% sites were represented by >1 shared OTUs), 320 

exclusion of all OTUs that occurred once, and a multi-stage model selection procedure as 321 

implemented in the DISTLM function of Permanova+ (www.primer-e.com/permanova.htm ). 322 

Considering computational requirements, 15 candidate variables were pre-selected based on 323 

unifactorial (marginal test based on largest Fpseudo values) and multifactorial (forward selection) 324 

models. Spatial eigenvectors were not included in these analyses, because they were typically 325 

of minor importance in variation partitioning analyses (see below), and to avoid making the 326 

models computationally prohibitive. Optimal models were selected based on the AICc. To 327 

obtain coefficients of determination (cumulative R
2

adjusted) and statistics (Fpseudo and P-values) 328 

for each variable, components of the best models were forward selected. In parallel, we 329 

prepared Global Nonmetric Multidimensional Scaling (GNMDS) graphs using the same 330 

options. Significant variables were fitted into the GNMDS ordination space using the envfit 331 
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function in the vegan package of R. We also grouped all climatic, edaphic, spatial, and floristic 332 

variables into a variation partitioning analysis by integrating procedures in the vegan and 333 

packfor packages of R. Besides group effects, variation partitioning estimates the proportion of 334 

shared variation among these groups of predictors. 335 

For global biogeographic analyses, we excluded OTUs from the order Hypocreales and 336 

family Trichocomaceae (both Ascomycota), because the ITS region provides insufficient 337 

taxonomic resolution and known biological species are grouped together within the same OTU 338 

(23). We tested the differences among fungal taxonomic and functional groups for the 339 

occurrence frequency (number of sites detected) and latitudinal range of OTUs using a non-340 

parametric Kruskal-Wallis test and Bonferroni-adjusted multiple comparisons among mean 341 

ranks. To test the validity of Rapoport’s rule in soil fungi, we calculated the average latitudinal 342 

range of OTUs for each site (24). The average latitudinal range was regressed with the latitude 343 

of study sites by polynomial model selection based on the AICc criterion. This analysis was 344 

run with and without OTUs only detected at a single site (range=0). Because the results were 345 

qualitatively similar, we report results including all OTUs. To construct biogeographic 346 

relationships among major regions and biomes, we generated cross-region and cross-biome 347 

networks based on the number of shared OTUs. We excluded occurrences represented by a 348 

single sequence per site. Ward clustering of biogeographic regions and biomes were 349 

constructed using the Morisita-Horn index of similarity, which is insensitive to differences in 350 

samples size, by use of the pvclust package of R. In this procedure, P-values are inferred for 351 

non-terminal branches based on multiscale bootstrap resampling with 1,000 replicates. 352 

  353 



17 
 

Results and Discussion 354 

 355 

Taxonomic and functional diversity 356 

Pyrosequencing analysis of global soil samples revealed 1,019,514 quality-filtered sequences 357 

that were separated into 94,255 species-level OTUs (see supplementary information). 358 

Altogether 963,458 (94.5%) sequences and 80,486 (85.4%) OTUs were classified as Fungi. 359 

Most other taxa belonged to animals (Metazoa, 3.3%), plants (Viridiplantae, 3.1%), alveolates 360 

(Alveolata, 2.8%), and amoebae (mostly Rhizaria, 1.3%). Kingdom-level assignment of 3.8% 361 

OTUs remained elusive. The fungal subset included 35,923 (44.6%) OTUs that were 362 

represented by a single sequence; these were removed from further analyses to avoid 363 

overestimating richness based on these potentially erroneous sequences (25). The remaining 364 

44,563 non-singleton fungal OTUs in our data set numerically correspond to approximately 365 

half of the described fungal species on Earth (1). For comparison, there are currently 52,481 366 

OTUs based on 98.0% similarity clustering of all fungal ITS sequences in publicly available 367 

databases (12). Global soil sampling revealed representatives of all major phyla and classes of 368 

Fungi. Of fungal taxa, Basidiomycota (55.7%), Ascomycota (31.3%), Mortierellomycotina 369 

(6.3%) and Mucoromycotina (4.4%) encompassed the largest proportion of sequences (Fig. 2), 370 

whereas the most OTU-rich phyla were the Ascomycota (48.7%), Basidiomycota (41.8%), 371 

Chytridiomycota (2.3%), and Cryptomycota (syn. Rozellida; 2.1%) (Fig. S2; Data S1). Except 372 

for the recently described phylum Cryptomycota (26), the relative proportions of major phyla 373 

correspond to the proportional distribution of taxa described and sequenced to date (12, 374 

www.indexfungorum.org). Below the phylum level, approximately 6% of all fungal OTUs 375 

could not be assigned to any known class of fungi. Further clustering of unidentified fungal 376 

http://www.indexfungorum.org/
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sequences at 70% sequence similarity revealed 14 distinct taxonomic groups comprising >7 377 

OTUs, suggesting that there are several deeply divergent class-level fungal lineages that have 378 

not yet been described or previously sequenced.  379 

Our classification revealed that 10,801 (24.2%) fungal OTUs exhibited >98% sequence 380 

similarity, and 33.8% exhibited >97% similarity, to pre-existing ITS sequences in public 381 

databases. This is consistent with Taylor et al. (19), reporting 48% of OTUs amplified from 382 

Alaskan soils with >97% similarity to any database sequences. In our study, only 4353 fungal 383 

OTUs (9.8%) were matched to sequences from herbarium specimens or fully described culture 384 

collections at >98.0% sequence similarity. Although many type collections are yet to be 385 

sequenced, the paucity of matches to database entries indicates that a majority of soil-386 

inhabiting fungal taxa remain undescribed (19-20). These results highlight the current lack of 387 

data from understudied tropical and subtropical ecosystems. The phenomenon of high cryptic 388 

diversity and low success in naming OTUs at the genus or species level have been found in 389 

other groups of soil microbes and invertebrates, emphasizing our poor overall knowledge of 390 

global soil biodiversity (27-28). 391 

The main fungal phylogenetic and functional groups were present in all ecosystems, but 392 

their relative proportions varied several-fold across biomes (Figs. 2, S2-S4). The ratio of 393 

Ascomycota to Basidiomycota OTUs was highest in grasslands and shrublands (1.86) and 394 

tropical dry forests (1.64) but lowest in the temperate deciduous forests (0.88). 395 

Chytridiomycota, Cryptomycota, and Glomeromycota were relatively more diverse in the 396 

grasslands and shrublands, accounting for 4.6%, 3.6%, and 1.4% of OTU richness, 397 

respectively. The relative OTU richness of Mortierellomycotina and Mucoromycotina 398 

(including most fast-growing molds but also some plant symbionts) peaked in the tundra biome 399 
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(4.8% and 2.7%, respectively), but their abundance was lowest in tropical dry forests (1.0% 400 

and 0.6%, respectively). Archaeorhizomycetes, a recently described class of Ascomycetes from 401 

a boreal forest (29), was most diverse in tropical moist and montane forests, particularly in 402 

northern South America and New Guinea. 403 

Among all fungal taxa, OTUs assigned to saprotrophs, EcM mutualists, and plant 404 

pathogens comprised 19,540 (43.8%), 10,334 (23.2%), and 1770 (4.0%), respectively (Fig. 405 

S4). Other trophic categories were contained <1% of remaining OTUs. EcM fungi contributed 406 

34.1% of all taxa in the northern temperate deciduous forests, but accounted for a relatively 407 

low proportion (11.9%) in grasslands and shrublands, reflecting the paucity of host plants in 408 

these ecosystems. Similarly, the proportion of EcM fungal taxa was lowest in northern South 409 

America (8.0%), where AM trees often dominate. Plant pathogens were relatively more 410 

abundant and diverse in lowland tropical moist (6.2%) and dry (6.3%) forests. 411 

 412 

Predictors of global richness 413 

Structural equation models revealed that climate has both a strong direct effect on plant and 414 

fungal richness and functional groups, but it also indirectly affects these metrics by altering 415 

edaphic conditions (Main text; Fig. S5). Both SEM and regression models suggest that the best 416 

predictors of diversity differed among phylogenetic and functional groups of fungi. Positive 417 

effects of mean annual precipitation (MAP) and soil Ca concentration were the strongest 418 

predictors of total fungal diversity, explaining 7.2% and 8.9% of residual richness, respectively 419 

(Table S2). Richness of EcM fungi responded positively to the relative proportion and species 420 

richness of EcM plants (explaining 18.3% and 8.5% of variance, respectively), as well as soil 421 

pH (13.0%). EcM host species richness (5.9%) and soil pH (20.4%) remained the strongest 422 
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predictors in the best model for sites with EcM vegetation accounting for >60% of basal area, a 423 

critical point above which the proportion of EcM plants had no further effect on EcM fungal 424 

richness. MAP had a strong positive effect (14.8%) on richness of saprotrophs. Diversity of 425 

plant pathogens declined with increasing distance from the equator (17.8%) and soil C/N ratio 426 

(11.6%). Animal parasites responded positively to MAP (20.3%), whereas monthly variation of 427 

precipitation (MAP CV) had a negative impact on richness of mycoparasites (fungus-parasitic 428 

fungi; 8.2%). Richness of the AM Glomeromycota was negatively related to the age of 429 

vegetation (7.3%) but positively related to potential evapotranspiration (PET, 3.5%) and soil 430 

pH (4.3%). Of the major taxonomic groups, the richness of Ascomycota in general (18.5%) 431 

and that of Archaeorhizomycetes (21.7%) were negatively related to distance from the equator 432 

in best-fit models. Climatic variables were the best predictors for richness of 433 

Mortierellomycotina (MAT: negative effect, 26.1%) and the ascomycete classes 434 

Dothideomycetes (MAT: positive effect, 20.9%), Lecanoromycetes (MAT: negative effect, 435 

26.7%), Leotiomycetes (MAT: negative effect, 30.1%), Orbiliomycetes (MAT: positive effect, 436 

12.8%), and Sordariomycetes (MAP: positive effect, 33.4%). The richness of Chytridiomycota 437 

and the ascomycete class Pezizomycetes was best explained by a positive response to soil pH 438 

(8.6% and 40.5%, respectively). Concentration of soil nutrients or their ratio to other nutrients 439 

were the strongest predictors for OTU richness of Cryptomycota (N concentration: positive 440 

effect, 10.1%), Geoglossomycetes (N/P ratio: positive effect, 3.7%), Mucoromycotina (C/N 441 

ratio: positive effect, 19.0%), and Wallemiomycetes (P concentration: negative effect, 14.9%). 442 

The richness of Basidiomycota and its class Agaricomycetes were best explained by a positive 443 

response to soil Ca concentration (13.5% and 12.8%, respectively). 444 
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Although geographical distance per se had negligible effects on richness (Moran’s 445 

I=0.267), spatial predictors were included in the best richness models of nearly all functional 446 

and phylogenetic groups (except Glomeromycota), indicating regional- or continental-scale 447 

differences in OTU richness (Fig. 1B). Compared to other tropical regions, richness of fungi 448 

was conspicuously lower in Africa, independent of biome type. These results might reflect the 449 

relatively lower MAP in much of Africa compared with other tropical continents. 450 

Alternatively, lower fungal richness could be related to the disproportionately strong shifts in 451 

biomes during the Pleistocene, which impoverished the African flora (18). 452 

Among edaphic variables, soil pH and Ca concentration were typically the most 453 

important predictors of fungal OTU richness. These variables positively correlated with fungal 454 

richness at the global scale (F1,335=290.7; RPearson=0.682; P<0.001). The strong positive 455 

influence of soil Ca concentration on richness of fungi, in particular Basidiomycota, is 456 

congruent with a similar positive relationship found for Ca and EcM fungal richness associated 457 

with Northern Hemisphere Alnus spp. (30). Exchangeable Ca is important for many 458 

physiological processes in plants and microorganisms and it influences the turnover rate of soil 459 

organic matter (31). In soil geochemical processes, pH and Ca concentration affect each other 460 

and thus may have both direct and indirect effects on soil biota. Fungal functional groups were 461 

differentially affected by pH. Richness of EcM fungi was greatest in slightly acidic to neutral 462 

soils (Fig. S6), whereas saprotrophs, especially white rot decomposers, were more diverse in 463 

moderately to strongly acidic soils. Richness of Pezizomycetes peaked distinctly in neutral 464 

soils. 465 

 466 

Macroecological patterns 467 
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In general agreement with biogeographic patterns of plants, animals, and foliar endophytic 468 

fungi (5,32), the overall richness of soil fungi increased towards the equator (Fig. 3A). 469 

However, major functional and taxonomic groups showed dramatic departures from the 470 

general latitudinal richness patterns (Figs. 3, S7). Namely, diversity of saprotrophic fungi, 471 

parasites, and pathogens increased at low latitudes, whereas richness of EcM fungi peaked at 472 

mid-latitudes, especially in temperate forests and Mediterranean biomes of the Northern 473 

Hemisphere (40-60 °N; Fig. S8). By contrast, saprotrophic fungi had a broad richness peak 474 

spanning from ca. 45 °S to 25 °N. Richness of Ascomycota, in particular that of 475 

Archaeorhizomycetes, Dothideomycetes, Eurotiomycetes, Orbiliomycetes, and 476 

Sordariomycetes, peaked in tropical ecosystems (Fig. S7). Conversely, the ascomycete classes 477 

Lecanoromycetes and Leotiomycetes as well as Microbotryomycetes (basidiomycete yeasts), 478 

Mortierellomycotina, and Mucoromycotina increased in diversity towards the poles, with no 479 

noticeable decline in boreal forests and tundra biomes. Agaricomycetes, Pezizomycetes, and 480 

Tremellomycetes exhibited distinct richness peaks at mid-latitudes. Richness of 481 

Agaricomycetes was greater in the Northern Hemisphere, whereas that of Microbotryomycetes, 482 

Tremellomycetes, and Wallemiomycetes peaked in the Southern Hemisphere temperate 483 

ecosystems (Fig. S8).  484 

All of these phylogenetic groups originated >150 million years ago on the 485 

supercontinent Pangaea (33) and have had sufficient time for long-distance dispersal. However, 486 

our data suggest that particular regional biotic or abiotic conditions (e.g., soil pH and favorable 487 

climatic conditions) have likely stimulated evolutionary radiations in certain geographic areas 488 

and not in others. Adaptation to cold climate in younger fungal phyla has been suggested to 489 

explain differential latitudinal preferences among fungal groups (34). However, our global 490 



23 
 

analysis provided no support for this hypothesis (Fig. S9). Instead, it revealed that ancient 491 

lineages are relatively more common in non-wooded ecosystems.  492 

 493 

Relation of plant and fungal richness 494 

Plant and fungal richness were positively correlated (Fig. S10), but plant richness explained no 495 

residual richness of fungi based on the best regression model (R
2

adj<0.01; P>0.05). These 496 

results and SEM path diagrams suggest that correlations between plant and fungal richness are 497 

best explained by their similar response to climatic and edaphic variables (i.e., covariance) 498 

rather than by direct effects of plants on fungi. However, when separating functional 499 

categories, trophic groups of fungi exhibited differential response to plant diversity and relative 500 

proportion of potential hosts.  501 

 Plant pathogens usually attack a phylogenetically limited set of host plants (35), 502 

suggesting that that plant pathogens have at least partly co-evolved with their hosts and may 503 

have radiated more intensively in the tropics where high plant diversification and richness 504 

permit greater diversification. Strong phylogenetic signals in soil feedbacks, adaptive radiation, 505 

and negative density dependence (the Janzen-Connell hypothesis) have probably contributed to 506 

the pronounced richness of both plants and their pathogens at low latitudes (36, 37). However, 507 

our analyses revealed no significant effects of plant richness per se on residual richness of 508 

pathogens in soil. Similarly to pathogens, richness of AM fungi was unrelated to the proportion 509 

of AM host trees or interpolated host richness, which may result from non-specific associations 510 

with tree and understory species. Hence both AM and soil pathogen richness were unaffected 511 

by plant richness. By contrast, host richness explained 6% of variation in EcM fungal richness, 512 

indicating either niche differentiation of fungi in forests of mixed hosts or sampling effects 513 
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(i.e., forests with higher host diversity are more likely to include plant species that harbor high 514 

fungal diversity). With a few notable exceptions, most studies have found low levels of host 515 

preference or host specificity among EcM fungi (38). We found that relative EcM host density 516 

had a strong influence on EcM fungal richness, suggesting that greater availability of 517 

colonizable roots in soil provides more carbon for EcM fungi and thereby yields greater 518 

species density and local-scale richness regardless of latitude. The peak of EcM fungal 519 

taxonomic and phylogenetic richness in northern temperate biomes coincides with the 520 

geographical distribution and dominance of Pinaceae, which is the oldest extant EcM plant 521 

family (15, 39).  522 

The ratio of plant-to-fungal richness decreased exponentially with increasing latitude, 523 

because plant diversity dropped precipitously toward the poles relative to fungal diversity (Fig. 524 

4). This finding calls into question present global fungal richness estimates. These estimates 525 

assume similar spatial turnover of plant and fungal species and a constant plant-to-fungus ratio, 526 

and have been formulated based mostly on data from temperate and boreal ecosystems (1, 19, 527 

20). Yet local-scale beta diversity of both plants and fungi differ among temperate and tropical 528 

sites (40, 41) and there are profound differences in plant species turnover depending on 529 

propagule size (42). Natural distribution of very few vascular plant species encompass several 530 

continents, but there are multiple fungal species with circumpolar or cosmopolitan distribution 531 

(43, 44; see Biogeography section below). While we cannot directly compare plant and fungal 532 

beta diversity, spatial turnover of plant species is inarguably greater (42). Based on the 533 

function of fungi-to-plant richness ratio to latitude and latitudinal distribution of land, we 534 

calculated that fungal richness is overestimated by 1.5- and 2.5-fold based on constant 535 

temperate (45° latitude) and boreal (65° latitude) richness ratios, respectively.  536 
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Since richness estimates are calculated based on the frequency of the rarest species, the 537 

reliability of singleton data call into question biologically meaningful extrapolations (11). In 538 

metabarcoding studies such as ours, sequencing errors tend to give rise to singleton sequences, 539 

and the number of rare artificial taxa grows rapidly with increasing sequencing depth (25). 540 

Therefore, despite the size of our dataset, it cannot readily be used to produce reliable 541 

taxonomic richness extrapolations. 542 

 543 

Community ecology 544 

Variation partitioning analysis revealed that climatic, edaphic, and floristic variables (and their 545 

shared effects) are the strongest predictors for community composition of all fungi and most of 546 

their functional groups (Fig. S11). However, the saprotroph community composition was most 547 

strongly explained by purely spatial variables. More specifically, PET and soil pH explained 548 

2.4% and 1.5%, respectively, of the variation in total fungal community composition (Table 549 

S3; Fig. S12). PET contributed 3.8%, 2.8%, and 11.7% to community structure of saprotrophs, 550 

plant pathogens, and yeasts, respectively. Distance from the equator (1.3%) and soil pH (0.7%) 551 

were the strongest predictors of EcM fungal community composition, whereas mean annual 552 

temperature (4.0%) was the strongest predictor for animal parasites, and distance from the 553 

equator (3.5%) was the best predictor for mycoparasites (Table S3; Fig. S12).  554 

These results indicate that both environmental and spatial predictors generally have a 555 

minor influence on species-level composition of fungi at the global scale. Nonetheless, the 556 

significant global-scale pH effect in several groups of fungi is consistent with the substantial 557 

influence of pH on the phylogenetic structure of soil fungal and bacterial communities in both 558 

local and continental scales (27, 45). The relatively stronger climatic and edaphic drivers of 559 



26 
 

richness at the class and phylum level suggest that phylogenetic niche conservatism in fungal 560 

lineages is similar to cross-biome distribution patterns in vascular plants (46) and protists (47). 561 

 562 

Global biogeography 563 

Consistent with Rapoport’s rule formulated for macro-organisms (24) and later applied to 564 

marine bacteria (48), the mean latitudinal range of fungi strongly increased towards the poles 565 

(Fig. S13). These results also suggest that a greater proportion of fungi are endemic within 566 

tropical rather than extra-tropical ecosystems. 567 

Major taxonomic and functional groups of fungi differed markedly in their distribution 568 

range (Figs. S14, S15). Animal parasites were more widely distributed compared with all other 569 

groups, suggesting that there are many generalist OTUs with global distribution. Saprotrophs 570 

and plant pathogens had broader distribution ranges than EcM and AM root symbionts. Taxa 571 

belonging to Mortierellomycotina, Mucoromycotina, Tremellomycetes, and Wallemiomycetes 572 

– groups that include a large proportion of saprotrophs and parasites that produce exceptionally 573 

large quantities of aerially dispersed mitospores – were generally most widely distributed. 574 

Besides the AM Glomeromycota, OTUs belonging to the ascomycete classes 575 

Archaeorhizomycetes, Geoglossomycetes, and Orbiliomycetes were detected from the fewest 576 

sites.  577 

The northernmost biogeographic regions (Europe, West Asia, East Asia, and North 578 

America) had the most similar fungal communities as revealed by shared fungal OTUs (Fig. 5). 579 

Based on the Morisita-Horn similarity index, the northern and southern temperate regions 580 

clustered together with marginally non-significant support (P=0.064; Fig. 6A). In spite of the 581 

large geographical distance separating them, paleo- and neotropical biogeographic regions 582 
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clustered together (P=0.059). However, biogeographic clustering of regions deviated markedly 583 

in certain functional groups of fungi (Fig. 6). For instance, EcM fungi in the southern 584 

temperate and tropical regions had greater similarity compared with northern temperate 585 

ecosystems (P=0.001). Among biomes, boreal forests, temperate coniferous forests, and 586 

temperate deciduous forests shared the largest numbers of fungal OTUs (Fig. S16). Fungal 587 

OTUs in temperate deciduous forests were highly similar to Mediterranean and tropical 588 

montane forests, whereas fungal OTUs in tropical montane forests were linked to tropical 589 

moist forests, which in turn exhibited substantial connections with tropical dry forests and 590 

savannas. As a result, cluster analysis supported separation of tropical and non-tropical biomes 591 

(Fig. 6B). Consistent with biogeographic region-level analysis, lowland tropical biomes, arctic 592 

tundra and boreal forests biomes, and temperate biomes formed three well-supported clusters. 593 

Tropical montane forests and grasslands and shrublands were clustered with temperate biomes 594 

based on distribution of all fungi and most functional groups. However in EcM fungi, taxa 595 

from southern temperate forests, tropical montane forests, and grass/shrublands clustered with 596 

tropical lowland and Mediterranean biomes. A relatively large proportion of EcM fungal taxa 597 

were shared across various biomes in Australia and New Guinea, which explains these 598 

deviating patterns. In contrast, plant pathogens from tropical montane forests clustered with 599 

tropical lowland biomes rather than with temperate biomes. 600 

Our biogeographic analyses complement the community-level results suggesting that 601 

both climate and biogeographic history shape macro-ecological patterns of fungi. Co-migration 602 

with hosts over Pleistocene land bridges (e.g., Beringia, Wallacea, Panamanian) and long-603 

distance dispersal by spores appear to have played important roles in shaping current fungal 604 

distribution patterns (30, 43). The relative influence of climate and biotrophic associations with 605 
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host plants of varying extant distributions probably contribute to differences in the range and 606 

biogeographic relationships among fungal functional groups (49). In addition, taxon-specific 607 

constraints for dispersal, such as shape and size of propagules and sensitivity to UV light, may 608 

differentially affect long-distance dispersal among taxa (7). For instance, Glomeromycota 609 

OTUs, which form relatively large non-wind dispersed asexual spores, had the lowest average 610 

geographical range. In general, region-based distribution patterns of fungi are somewhat 611 

conflicting with clustering of plants and animals, where Holarctic lineages are deeply nested 612 

within larger tropical groups (50). Consistent with macro-organisms, fungi from the Southern 613 

Hemisphere temperate landmasses cluster together. Differences observed in macro-ecological 614 

patterns among fungi, plants, and animals may originate from the relative strength of dispersal 615 

limitation and phylogeographic history, but exaggeration by methodological differences among 616 

studies cannot be discounted. The use of homogenous sampling and analytical methods, as 617 

done in this study, are necessary to confidently compare macro-ecological patterns amongst 618 

distinct life forms and to reliably test degrees of consistency among all kingdoms of life. 619 

 620 

Conclusions and perspectives 621 

Climatic variables explained the greatest proportion of richness and community composition in 622 

fungal groups by exhibiting both direct and indirect effects through altered soil and floristic 623 

variables. The strong driving climatic forces identified here open up concerns regarding the 624 

impact of climate change on the spread of disease (51) and the functional consequences of 625 

altered soil microorganism communities (52). The observed abrupt functional differences 626 

between fungal communities in forested and treeless ecosystems, despite spatial juxtaposition, 627 

suggests that plant life form and mycorrhizal associations determine soil biochemical processes 628 



29 
 

more than plant species per se. Loss of tree cover and shrub encroachment resulting from 629 

drying and warming may thus have a marked impact on ecosystem functioning both above- 630 

and belowground. 631 

In addition to natural mechanisms, such as long-distance dispersal and migration over 632 

past land bridges, global trade has enhanced the spread of some non-native soil organisms into 633 

other ecosystems, where they sometimes become hazardous to native biota, economy, and 634 

human health (53). Our results highlight how little insight we still have into natural microbial 635 

distribution patterns, and this undermines our ability to appraise the actual role of humans in 636 

shaping these biogeographic processes. Even larger-scale sampling campaigns are needed to 637 

provide data for establishing natural distributions and building species distribution models 638 

(52), which will enable us to predict the spread and habitat suitability of non-native 639 

microorganisms. 640 

  641 
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 713 

Figure legends 714 

 715 

Fig. 1. Map of A) global sampling (circles as study sites); B) Interpolated taxonomic richness 716 

of all fungi using Inverse Distance Weighting (IDW) algorithm and accounting for the 717 

relationship with mean annual precipitation (based on the best multiple regression model). 718 

Different colors depict residual Operational Taxonomic Unit (OTU) richness of all fungi 719 

accounting for sequencing depth. Warm colors indicate OTU-rich sites, whereas cold colors 720 

indicate sites with fewer OTUs.  721 

 722 

  723 
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Fig. 2. Relative proportion of fungal sequences assigned to major taxonomic groups in 724 

different biomes.  725 

 726 

 727 

  728 
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Fig. 3. Relationships between residual richness of fungal taxonomic or functional groups and 729 

distance from the equator. A, all fungi; B, ectomycorrhizal (EcM) fungi; C, saprotrophic fungi; 730 

D, plant pathogens; E, animal parasites; F, mycoparasites; G, white rot decomposers; and H, 731 

yeasts. Lines indicate best-fitting linear or polynomial functions. 732 

 733 

 734 
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Fig. 4. Relationship between standardized plant richness to fungal richness ratio and distance 736 

from the equator based on (A) interpolated values and (B) polynomial regression. Residuals of 737 

fungal richness are taken from the best linear regression model accounting for other significant 738 

predictors. Warm colors indicate high plant-to-fungal richness ratio, whereas cold colors 739 

indicate low plant-to-fungal richness. 740 

 741 

  742 
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Fig. 5. Connectedness of biogeographic regions by shared Operational Taxonomic Units 743 

(OTUs) of ectomycorrhizal fungi (blue), saprotrophs (black), and plant pathogens (red). The 744 

width of lines and diameter of circles are proportional to the square root of the number of 745 

connections and sample size (number of sites), respectively. Numbers in circles indicate the 746 

number of OTUs found in each region. OTUs with a single sequence per site and OTUs 747 

belonging to Hypocreales and Trichocomaceae (in which the ITS region is too conservative for 748 

species-level discrimination) were excluded. 749 
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Fig. 6. Ward clustering of biogeographic regions (left panes) and biomes (right panes) based 752 

on the Morisita-Horn pairwise similarity index in A and B, all fungi; C and D, ectomycorrhizal 753 

fungi; E and F, saprotrophs; G and H, plant pathogens. Numbers above branches indicate P-754 

values.  755 
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