e-space
Manchester Metropolitan University's Research Repository

Omega-3 fatty acids and vitamin D in immobilisation: Part B- modulation of muscle functional, vascular and activation profiles

Bostock, EL and Morse, CI and Winwood, K and McEwan, I and Onambele (Pearson), GL (2016) Omega-3 fatty acids and vitamin D in immobilisation: Part B- modulation of muscle functional, vascular and activation profiles. The journal of nutrition, health & aging. ISSN 1760-4788

[img]
Preview

Available under License Creative Commons Attribution.

Download (348kB) | Preview

Abstract

Abstract Objectives: This study set out to determine whether two potential protein-sparing modulators (eicosapentaenoic acid and vitamin D) would modulate the anticipated muscle functional and related blood vessels function deleterious effects of immobilisation. Design: The study used a randomised, double-blind, placebo-controlled design. Setting: The study took part in a laboratory setting. Participants: Twenty-four male and female healthy participants, aged 23.0±5.8 years. Intervention: The non-dominant arm was immobilised in a sling for a period of nine waking hours a day over two continuous weeks. Participants were randomly assigned to one of three groups: placebo (n=8, Lecithin, 2400 mg daily), omega-3 (-3) fatty acids (n=8, eicosapentaenoic acid (EPA); 1770 mg, and docosahexaenoic acid (DHA); 390 mg DHA, daily) or vitamin D (n=8, 1,000 IU daily). Measurements: Isometric and isokinetic torque, antagonist muscle co-contraction (activation profile), muscle fatigability indices, and arterial resting blood flow were measured before, at the end of the immobilisation period, and two weeks after re-mobilisation. Results: Muscle elbow flexion and extension isometric and isokinetic torque decreased significantly with limb immobilisation in the placebo group (P<0.05). Despite no significant effect of supplementation, -3 and vitamin D supplementation showed trends (P>0.05) towards attenuating the decreases observed in the placebo group. There was no significant change in muscle fatigue parameters or co-contraction values with immobilisation and no effect of supplementation group (P>0.05). Similarly, this immobilisation model had no impact on the assessed blood flow kinetics. All parameters had returned to baseline values at the re-mobilisation phase of the study. Conclusion: Overall, at the current doses, neither -3 nor vitamin D supplementation significantly attenuated declines in torque associated with immobilisation. It would appear that muscle function (described here in Part B) might not be as useful a marker of the effectiveness of a supplement against the impact of immobilisation compared to tissue composition changes (described in Part A).

Impact and Reach

Statistics

Downloads
Activity Overview
26Downloads
71Hits

Additional statistics for this dataset are available via IRStats2.

Altmetric

Actions (login required)

Edit Item Edit Item