
Atmos. Chem. Phys., 14, 13159–13174, 2014

www.atmos-chem-phys.net/14/13159/2014/

doi:10.5194/acp-14-13159-2014

© Author(s) 2014. CC Attribution 3.0 License.

Methane and carbon dioxide fluxes and their regional scalability for

the European Arctic wetlands during the MAMM

project in summer 2012

S. J. O’Shea1, G. Allen1, M. W. Gallagher1, K. Bower1, S. M. Illingworth1,*, J. B. A. Muller1, B. T. Jones1,

C. J. Percival1, S. J-B. Bauguitte2, M. Cain3, N. Warwick10,3, A. Quiquet3, U. Skiba4, J. Drewer4, K. Dinsmore4,

E. G. Nisbet5, D. Lowry5, R. E. Fisher5, J. L. France5,**, M. Aurela6, A. Lohila6, G. Hayman7, C. George7,

D. B. Clark7, A. J. Manning8, A. D. Friend9, and J. Pyle10,3

1School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road,

Manchester, M13 9PL, UK
2Facility for Airborne Atmospheric Measurements (FAAM), Building 125, Cranfield University, Cranfield,

Bedford, MK43 0AL, UK
3Centre for Atmospheric Science, University of Cambridge, Cambridge CB2 1EW, UK
4Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
5Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
6Climate Change Research, Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki, Finland
7Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, OX10 8BB, UK
8UK Meteorological Office, Fitzroy Rd, Exeter, UK
9Department of Geography, Downing Place, Cambridge CB2 3EN, UK
10National Centre for Atmospheric Science, UK
*now at: School of Research, Enterprise & Innovation, Manchester Metropolitan University, Chester Street,

Manchester, M1 5GD, UK
**now at: School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK

Correspondence to: S. J. O’Shea (sebastian.oshea@manchester.ac.uk)

Received: 7 February 2014 – Published in Atmos. Chem. Phys. Discuss.: 31 March 2014

Revised: 28 August 2014 – Accepted: 31 October 2014 – Published: 10 December 2014

Abstract. Airborne and ground-based measurements of

methane (CH4), carbon dioxide (CO2) and boundary layer

thermodynamics were recorded over the Fennoscandian

landscape (67–69.5◦ N, 20–28◦ E) in July 2012 as part of the

MAMM (Methane and other greenhouse gases in the Arctic:

Measurements, process studies and Modelling) field cam-

paign. Employing these airborne measurements and a simple

boundary layer box model, net regional-scale (∼ 100 km)

fluxes were calculated to be 1.2± 0.5 mg CH4 h−1 m−2

and −350± 143 mg CO2 h−1 m−2. These airborne fluxes

were found to be relatively consistent with seasonally

averaged surface chamber (1.3± 1.0 mg CH4 h−1 m−2)

and eddy covariance (1.3± 0.3 mg CH4 h−1 m−2 and

−309± 306 mg CO2 h−1 m−2) flux measurements in the

local area. The internal consistency of the aircraft-derived

fluxes across a wide swath of Fennoscandia coupled with an

excellent statistical comparison with local seasonally aver-

aged ground-based measurements demonstrates the potential

scalability of such localised measurements to regional-scale

representativeness. Comparisons were also made to longer-

term regional CH4 climatologies from the JULES (Joint UK

Land Environment Simulator) and HYBRID8 land surface

models within the area of the MAMM campaign. The

average hourly emission flux output for the summer period

(July–August) for the year 2012 was 0.084 mg CH4 h−1 m−2

(minimum 0.0 and maximum 0.21 mg CH4 h−1 m−2) for

the JULES model and 0.088 mg CH4 h−1 m−2 (minimum

0.0008 and maximum 1.53 mg CH4 h−1 m−2) for HYBRID8.
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Based on these observations both models were found to

significantly underestimate the CH4 emission flux in this

region, which was linked to the under-prediction of the

wetland extents generated by the models.

1 Introduction

Temperatures at high northern latitudes have been observed

to be increasing at a rate of twice the global average over

the past two decades (Forster and Ramaswamy, 2007). It

has been suggested that this rise will continue (Parmentier

et al., 2013). This is likely to have significant consequences

for natural greenhouse gas emissions in the region, which

contain potentially large sources that are known to be highly

sensitive to changes in temperature, such as the boreal wet-

lands and the reservoirs of carbon that are sequestered in per-

mafrost and as methane hydrates (Smith et al., 2004; Zimov

et al., 2006a, b; Ping et al., 2008). As well as contributing

to radiative forcing, such emissions have the potential to sig-

nificantly perturb atmospheric chemistry, including oxidant

capacity (Isaksen et al., 2011). Palaeo-records indicate that

strong positive feedbacks exist between climate and green-

house gas emissions in the region, whereby warming causes

enhanced emissions that in turn lead to further warming

(Walter et al., 2007; Nisbet and Chappellaz, 2009). Recent

studies have already reported newly identified or growing

CH4 emissions from some of these carbon reservoirs (West-

brook et al., 2009; Shakhova et al., 2010; Kort et al., 2012;

Anthony et al., 2012).

Wetland regions are the single largest source of atmo-

spheric CH4, accounting for approximately a third of to-

tal global CH4 emissions equivalent to 142–208 Tg yr−1

(Kirschke et al., 2013), for which Boreal and Arctic re-

gions make a significant contribution (approximately 25 %;

Smith et al., 2004; Zhuang et al., 2006). Much of the re-

mainder is currently suggested to originate from tropical wet-

lands (Bridgham et al., 2013). Biogenic CH4 is produced

in anoxic soils through the decomposition of organic matter

by methanogenic bacteria (Bridgham et al., 2013). Emission

rates by this process are dependent on soil moisture, temper-

ature and the availability of organic matter (Pelletier et al.,

2007; Strom and Christensen, 2007). Much of this CH4 does

not reach the atmosphere due to consumption that occurs

in oxic soil regions by methanotrophic bacteria (O’Connor

et al., 2010; Parmentier et al., 2011). As a result of these

competing environment-dependant factors, emissions show

a large degree of spatial and temporal variability (Zhuang et

al., 2006; Pickett-Heaps et al., 2011).

CO2 exchange between the surface and the atmosphere in

these regions displays a similar degree of complexity. It is

governed by the interplay between release of CO2 through

respiration and uptake by photosynthesis. At high latitudes,

as temperatures rise and the ground thaw reaches greater soil

depths, more organic carbon becomes available for decom-

position, potentially liberating large carbon reservoirs to the

atmosphere (Oelke et al., 2004). However, a simultaneous in-

crease in plant production and biomass may also occur dur-

ing the growing season. Rapid warming at high latitudes is

increasing both plant growth and soil decomposition, mak-

ing it difficult to determine the overall impact a warmer cli-

mate has on the total net carbon budget of Arctic and Boreal

regions (Zhuang et al., 2006; Davidson and Janssens, 2006;

Sitch et al., 2007; Schuur et al., 2009).

Previously, Arctic wetland emissions have been deter-

mined by up-scaling surface chamber and eddy covariance

flux measurements (Pelletier et al., 2007) or by process-based

and inverse models (Petrescu et al. 2010; Pickett-Heaps et

al., 2011; Wania et al., 2010; Bousquet et al., 2011). How-

ever, due to the heterogeneous nature of wetlands, uncertain-

ties exist when multiple studies are synthesised to determine

net emissions for large areas (Christensen et al., 2007). Cur-

rently, there is a lack of flux measurements at the same spatial

scale as the resolution of global land surface models (typi-

cally 0.5◦), which has been identified as a key reason why

models are not able to confidently simulate the wetland CH4

flux (Melton et al., 2013). Airborne measurements have been

shown to be a powerful tool in reducing these uncertainties

(Desjardins et al., 1997; Miller et al., 2007; Peischl et al.,

2012), where the greater spatial coverage afforded may be

an advantage over ground-based measurements under appro-

priate conditions, especially when testing the scalability of

fluxes derived for local scales across wider areas.

Ground-based CH4 flux measurements have now been

made for multiple years in several wetland locations within

northern Fennoscandia, these include the Stordalen wetlands,

in sub-arctic Sweden (68.33◦ N, 19.05◦ E; Christensen et al.,

2012), and both Kaamanen (69.1◦ N, 27.2◦ E; Maanavilja

et al., 2011) and Lompolojänkkä (68.0◦ N, 24.2◦ E; Aurela

et al., 2009) in Finland. Stordalen summer CH4 emissions

have been reported as 4.7 mg CH4 m−2 h−1 (2004–2006) and

6.2± 2.6 mg CH4 m−2 h−1 (2006 and 2007) (Petrescu et al.,

2008; Jackowicz-Korczynski et al., 2010). Mean July CO2

fluxes are −1152 mg CO2 m−2 h−1, −576 mg CO2 m−2 h−1

and −504 mg CO2 m−2 h−1 for Lompolojänkkä, Kaamanen

and Siikaneva, respectively (Aurela et al., 2009).

This paper uses in situ measurements collected on board

the UK’s Facility for Airborne Atmospheric Measurements

(FAAM) BAe-146 research aircraft to quantify greenhouse

gas net fluxes from the Fennoscandian wetlands during

a dedicated case study. A simple boundary layer mass

budget approach (described in Sect. 3.1) is employed to

derive regional fluxes using the aircraft observations un-

der pseudo-stationary boundary layer flow assumptions

(Sect. 4.1). This estimate is then compared to smaller foot-

print ground-based eddy covariance and chamber measure-

ments within the aircraft’s sampling footprint that were made

over much of summer 2012 to address scalability and spatio-

temporal heterogeneity (Sect. 4.3). Finally, the regional-scale
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aircraft-derived flux is used to assess the skill of two land sur-

face models (Sect. 4.4).

2 Methods

The measurements reported in this paper were col-

lected as part of the MAMM (Methane and other

greenhouse gases in the Arctic: Measurements, process

studies and Modelling, http://arp.arctic.ac.uk/projects/

methane-and-other-greenhouse-gases-arctic-measurem/)

project. The aim of the MAMM project is to quantify

greenhouse gas fluxes at high northern latitudes using

a combination of measurement, process and modelling

studies. As part of this project, sorties were performed

from Kiruna, Sweden, by the FAAM BAe-146 research

aircraft during July 2012 (six flights), August 2013 (nine

flights), September 2013 (seven flights) and July 2014 (eight

flights). This flight has been chosen for this case study due

to the favourable meteorological and flight conditions for

applying a mass budget approach (Sect. 3.1) to derive fluxes

(Sect. 4.1). The MAMM campaign is ongoing at the time

of writing and we anticipate that a seasonal analysis will be

addressed in the future.

2.1 FAAM BAe-146 research aircraft

CO2 and CH4 dry air mole fractions were determined

through cavity-enhanced absorption spectroscopy on board

the FAAM BAe-146 (Model RMT-200, Los Gatos Research

Inc., USA). In-flight CO2 uncertainty was calculated as

± 0.17 ppm; typical 1 Hz precision is ± 0.70 ppm (all preci-

sions are 1σ). CH4 uncertainty is calculated at ± 1.31 ppb;

1 Hz precision is ± 2.37 ppb (for a detailed description of

this system see O’Shea et al., 2013b). Separate measure-

ments of CO2 and CH4 were made by analysing whole-air

samples. These were collected in stainless steel flasks (for

a description see Lewis et al., 2013), and analysed post-

flight in the laboratory using cavity-ring down spectroscopy

(Model G1301, Picarro Inc., USA). Uncertainty is estimated

at ± 0.5 ppb and ± 0.1 ppm for CH4 and CO2, respectively.

During the MAMM flights the mean bias of the whole-

air samples (400 samples) relative to the in situ measure-

ments was 0.16 (±0.46 at 1σ ) ppm for CO2 and −0.5 (±4.6

at 1σ ) ppb for CH4. Flask samples were also analysed for

δ13C isotopic ratios of CO2 and CH4, using continuous-flow

gas chromatography / isotope-ratio mass spectrometry, with

a precision of 0.1 ‰ (Fisher et al., 2006).

A range of other chemical, tracer and thermodynamic pa-

rameters were measured simultaneously on board the FAAM

BAe-146; these include pressure, temperature and the 3-

D wind vector with an estimated uncertainty of 0.3 hPa,

0.1 K and 0.2 m s−1, respectively (Allen et al., 2011). Mea-

surements of carbon monoxide (CO) and hydrogen cyanide

(HCN) are used here to identify air masses that have been

strongly influenced by either biomass burning or anthro-

pogenic activity using an enhancement-over-background-

threshold technique described by O’Shea et al. (2013a), as

such air masses would bias the calculation of the biogenic

flux. Mole fractions of CO were determined through vac-

uum ultraviolet fast-fluorescence spectrometry, with an un-

certainty of 2 % (AL5002, Aerolaser GmbH, Germany; Ger-

big et al., 1999). In situ HCN measurements were made using

a chemical ionisation mass spectrometer, with an uncertainty

of 10 % (Le Breton et al., 2013).

2.2 Surface measurements

CH4 and CO2 eddy covariance and chamber flux mea-

surements were made in Sodankylä, Finland, from 1 July

2012 to 15 August 2012. The eddy covariance system used

included a USA-1 (METEK GmbH, Germany) three-axis

sonic anemometer/thermometer, a RMT-200 (Los Gatos Re-

search, Inc., USA) CH4 analyzer and a LI-7200 (Li-Cor, Inc.,

USA) CO2/H2O gas analyzer. The measurement height was

6 m a.g.l. (above ground level). The length of the inlet tubes

for both gases was 8 m for CH4 and 1 m for CO2, with flow

rates of 15 and 20 L min−1, respectively. For more details

of the eddy covariance measurement system, see Aurela et

al. (2009).

Half-hour flux values were calculated using standard eddy

covariance methods. The original 10 Hz data were block-

averaged, and a double rotation of the coordinate system

was performed (McMillen, 1988). The time lag between the

anemometer and gas analyzer signals, resulting from the

transport through the inlet tube, was taken into account in

the on-line calculations. An air density correction related to

the latent heat fluxes was conducted according to Webb et

al. (1980). Corrections for the systematic high-frequency flux

loss owing to the imperfect properties and set-up of the sen-

sors (i.e. insufficient response time, sensor separation, damp-

ing of the signal in the tubing and averaging over the mea-

surement paths) were carried out off-line using transfer func-

tions with empirically determined time constants (Aubinet

et al., 2000). All data with wind directions from sector 240

to 290◦ were discarded due to insufficient fetch. Some data

were also discarded due to instrument failures during weak

turbulence (friction velocity < 0.1 m s−1). CO2 fluxes during

the period 14 July 2012 to 1 August 2012 are missing due to

instrumental problems.

Fluxes of CH4 were also measured using the static cham-

ber method, as follows. These were positioned to cover a

range of vegetation types and water saturations that can be

broadly classified into either those situated in wetlands (39

chambers) and those in the forest (21 chambers). Shallow

frames were installed the day before first sampling to a depth

of∼ 10 cm, and remained in situ for the duration of the study

period; fluxes calculated from the first sampling were not sig-

nificantly different from subsequent sampling occasions sug-

gesting that the short settling period after frame installation
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had no effect. Fluxes were measured at ∼ 2-day intervals be-

tween 12 July and 2 August. For measurements, chamber lids

were attached to the frames and internal air samples were col-

lected into vials four times over a 45 min incubation period.

Samples were analyzed by gas chromatography and fluxes

calculated using GCFlux, version 2. Reported CH4 fluxes

correlate to the best-fit model for individual chambers (either

linear or asymptotic) (for a detailed description of this ap-

proach see Levy et al., 2011, 2012). Fluxes of N2O and CO2

were also measured by the static chamber method. However,

since static-chamber-measured CO2 fluxes are only a mea-

sure of the ecosystem respiration inside the chambers and

do not include uptake by all plants, they cannot be directly

compared with the aircraft-derived flux estimates; this will

be presented in a separate study.

2.3 Methane emission models

In Sect. 4.4, we assess the skill of two land surface mod-

els: the Joint UK Land Earth Simulator (JULES; Best et al.,

2011; Clark et al., 2011) and HYBRID8 (Friend, 2010). The

JULES model contains a CH4 wetland emission parameter-

isation, developed and tested by Gedney et al. (2004) for

use at large spatial scales. The wetland parameterisation is

coupled to the large-scale hydrology scheme of Gedney and

Cox (2003), which predicts the distribution of sub-grid-scale

water table depth and wetland fraction (fw) from the overall

soil moisture content and the sub-grid-scale topography us-

ing the approach of Beven and Kirby (1979). The CH4 flux

from wetlands, Fw(CH4), is parameterised as a function of

temperature, wetland fraction and substrate availability, as

follows:

Fw(CH4)= fw k(CH4) Cs Q10(Tsoil)
(Tsoil−T0)/10, (1)

where Tsoil is the soil temperature (in K) averaged over the

top 10 cm and k(CH4) is a global constant which is cali-

brated to give the required global CH4 flux. The Q10 is a

temperature coefficient to account for the temperature de-

pendency of the flux. Soil carbon content (Cs) was used for

substrate availability. The default parameter values chosen

were k(CH4)= 7.4× 10−12 kg m−2 s−1, T0 = 273.15 K and

Q10(T0)= 3.7 (Clark et al., 2011).

The surface physics of the HYBRID8 model are based

on the NASA-Goddard Institute for Space Studies (GISS)

ModelE land surface component (Schmidt et al., 2006). This

model contains a canopy representation that has a mecha-

nistic canopy conductance response to various environmen-

tal factors (light, temperature, humidity, CO2 and canopy

height), which has been tested and calibrated using eddy co-

variance flux measurements (Friend and Kiang, 2005). Re-

cently, a TOPMODEL (a TOPography based hydrological

MODEL) approach has been implemented to model the hy-

drology following Niu et al. (2005). Very similar to the im-

plementation in the JULES land surface model, the TOP-

MODEL hydrological module in HYBRID8 uses a topo-

graphical index and interactively computes the wetland frac-

tion in each grid box (fw), and only saturated soils (deter-

mined by fw) contribute to CH4 emissions. The fluxes of

CH4 are also parameterised in a very similar way in HY-

BRID8 as in JULES. The governing equation for CH4 pro-

duction at depth z is

Pw(CH4)= k(CH4)Fps(z) Csom(z)Q
(T (z)−T0)/10

10 , (2)

where k(CH4) is the baseline production rate, Fps(z) is the

total pore space fraction in a specific layer (a function of

soil texture), Csom(z) is the soil organic matter at the depth

z, and T (z) is the soil temperature. For this study, the fol-

lowing representative parameters were chosen: k(CH4)=

1.3× 10−11 kg m−2 s−1, Q10 = 3 and T0 = 22 ◦C. The CH4

produced is then transported to adjacent layers via diffusiv-

ity, eventually reaching the atmosphere.

3 Experiment and analysis methodology

The following section describes the 22 July 2012 flight that

was used to determine regional-scale fluxes using a mass bal-

ance approach.

3.1 Aircraft mass balance

Mass budget approaches have been employed on several

occasions to derive regional-scale (> 1 km) fluxes of trace

species (White et al., 1976; Gallagher et al., 1994; Choular-

ton et al., 1995; Wratt et al., 2001; Mays et al., 2009; O’Shea

et al., 2014). Observations are typically made in a back-

ground location and then down-wind of a source region

to determine the net enhancement due to this region. The

mass budget approach used in this study is most applicable

when measurements are collected parallel to the prevailing

wind vector. If it can be assumed that the non-reactive tracer

species, S, is well mixed from the surface up to the top of

the planetary boundary layer (PBL),Z1, and that entrainment

into (and detrainment from) the PBL can be neglected, then

the net flux of S can be determined by

flux=
U

cosφ

1S

1x

Z1∫
0

ndz, (3)

where U (m s−1) is the mean wind speed, and n

(molecules m−3) is the atmospheric number density, which

is integrated from the surface to the top of the boundary layer

(m). The 1S (molecules molecules−1) term is the enhance-

ment in species S along the transect x of increment 1x(m).

The angle φ is between the mean wind vector and transect

x; see Hiller et al. (2014) for further details on the origin of

Eq. (3). In addition to a well-mixed PBL, several other re-

quirements regarding the PBL structure have to be met for

this simple model to be applicable. First, a single wind vec-

tor needs to be assumed. Changes in either the wind speed or
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direction will add uncertainty in the calculated flux. Second,

it is assumed that any surface emission is immediately mixed

throughout the PBL column. Third, the PBL height should

not vary significantly while measurements are collected and

a strong capping inversion is needed to prevent significant

exchange with the free troposphere. We examine the uncer-

tainty resulting from each of these assumptions in Sect. 4.

3.2 Flight sampling and study area

On the 22 July 2012 the FAAM BAe-146 surveyed the

northern Fennoscandian landscape in order to quantify emis-

sions from the wetlands in the region. Four large tran-

sects (∼ 340 km) were performed within the PBL: two east–

west (east to west transect 10:42 to 11:46 GMT (Green-

wich mean time); west to east 15:26 to 16:04 GMT) and

two north–south. Figure 1a shows the geographic coverage

of this flight along with the location of waypoints: Kiruna

(67.9◦ N, 20.2◦ E), Sodankylä (67.4◦ N, 26.6◦ E) and Kaa-

manen (69.1◦ N, 27.2◦ E). Figure 2a and b show observa-

tions of CH4 and CO2 collected during longitudinal transects

parallel to the prevailing wind. Figure 2c shows the FAAM

BAe-146’s altitude when these measurements were collected,

which was varied during transects in order to characterise

both the vertical and horizontal gradients of CH4 and CO2.

To show the prevalent vegetation and land use types

within the region, the flight track is also shown over-

laying the land classification (Fig. 1c; CORINE land

cover 2006; http://www.eea.europa.eu/data-and-maps/data/

corine-land-cover-2006-raster). As seen, the sampling do-

main is largely characterised by coniferous forests (33 %;

dark green Fig. 1c), peat bogs (23 %; blue Fig. 1c) and mixed

forests (16 %; green Fig. 1c).

3.3 Meteorology overview

Meteorological conditions on the 22 July 2012 were charac-

terised by low pressure centred over the Barents Sea to the

north of the FAAM BAe-146’s sampling domain in this case

study. This resulted in a consistent westerly airflow across

northern Scandinavia and shallow cumulus clouds (∼ 2/8

cover). Surface temperature was ∼ 17 ◦C, as confirmed by

infrared radiometers on the aircraft. The synoptic airflow is

illustrated in Fig. 1b, which shows HYSPLIT (Hybrid Single

Particle Lagrangian Integrated Trajectory Model; described

by Draxler and Rolph, 2003) back trajectories calculated

along the FAAM BAe-146’s flight track when it was within

the PBL (below 1500 m altitude). The majority of the air

mass sampled by the FAAM BAe-146 on 22 July 2012 spent

the previous 5 days at a low level (below 2000 m) within the

Arctic region and over the Arctic Ocean. During the FAAM

flight, in situ measurements also showed winds to be consis-

tently westerly, the mean wind bearing and speed within the

boundary layer was 260 (37 at 1σ)◦ and 6 (2 at 1σ)m s−1,

respectively.

Figure 1. (a) FAAM BAe-146 flight track for flight B720 (22 July

2012). Observations of CH4 in the PBL are coloured according to

the legend. Black diamonds mark Kiruna, Sodankylä and Kaama-

nen. (b) Five-day HYSPLIT back trajectories that were started ev-

ery minute along the FAAM BAe-146’s flight track when it was

within the PBL. (c) Flight track where the surface is coloured using

the land use type (CORINE land cover 2006). Numbers correspond

to land types given in Table 1.

Deep vertical profiles of potential temperature (derived

here from in situ measurements of pressure and tempera-

ture) from the FAAM BAe-146, performed over Sodankylä

(Fig. 3) at 01:00 and 15:00 GMT and from the two drop-

sondes released, show a clear capping inversion was present

over the area during the flight (Fig. 3). Over the run in ques-

tion, the surface topography was very flat, 400–500 m a.m.s.l.

(above mean sea level) and the infrared emissivity varied lit-

tle (∼ 0.98; see Allen et al., 2014). Therefore, in the ab-

sence of significant synoptic meteorological changes, which

were not observed in reanalyses for the area, it is expected
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Figure 2. (a) CH4 and (b) CO2 observations along a flight transect,

which was aligned with the prevailing wind direction. The origin is

20◦ E, 68◦ N and the transect extends in an eastward direction. The

gradients observed in both species were used to determine a net

emission flux for the region using Eq. (3). (c) The aircraft’s altitude

when measurements shown in (b) and (c) were collected.

that the PBL depth was relatively uniform over the time and

scale of the sampling in question. This is further examined in

Sect. 4.1.

4 Results and discussion

On the 22 July 2012, consistent linear gradients were ob-

served in both CH4 and CO2 along the longitudinal tran-

sects (Fig. 1), performed parallel to the prevailing wind. CH4

was found to be approximately 20 ppb higher at the east-

ern boundary compared to the western, while CO2 decreased

by several ppm over the same interval. No clear latitudinal

trends were observed in either species. However, a region

of significantly enhanced CH4 (up to 20 ppb) was observed

Figure 3. (a) Ascending (01:00 GMT) and (b) descending

(15:00 GMT) potential temperature profiles performed over So-

dankylä during flight B720, used to determine the boundary layer

height as described in the text.

to the north of Sodankylä (Fig. 1), a region with a slightly

higher proportion of wetlands (29 %).

With a mean PBL mole fraction of 89 ppb for CO and

26 ppt for HCN, both species remained at mole fractions

throughout the flight that are representative of a typical back-

ground for the summer at these latitudes (Vay et al., 2011;

O’Shea et al., 2013a). This indicates that any biomass burn-

ing and anthropogenic emissions within the region were

small and well-mixed when sampled by the FAAM BAe-146.

To identify the source of the observed CH4 enhancements

we use the measured δ13C isotopic ratios and a Keeling plot

methodology (Pataki et al., 2003). Figure 4 shows a Keel-

ing plot for all PBL measurements of δ13C–CH4 during the

flight on the 22 July 2012 (B720). The vertical intercept rep-

resents the isotopic ratio of the source of the enhancements.

A source of −70.2± 3.0 ‰ as seen here is consistent with

wetland CH4 emissions (−71 to −59 ‰; Fisher et al., 2011;

Sriskantharajah et al., 2012).

4.1 Regional-scale fluxes derived using aircraft

observations

In order to perform a mass budget flux calculation (Eq. 3), we

use the fact that the east–west transect performed during the

22 July 2012 flight was aligned nearly parallel with the pre-

vailing wind bearing, which was 258◦ during the transects.

This gradient (1S/1x) is determined here by first averaging

Atmos. Chem. Phys., 14, 13159–13174, 2014 www.atmos-chem-phys.net/14/13159/2014/



S. J. O’Shea et al.: Methane and carbon dioxide fluxes and their regional scalability 13165

Table 1. Land classification key corresponding to Fig. 1c from CORINE land cover 2006. Also included is the proportion of the aircraft’s

footprint that each classification accounted for during the B720 E–W transects.

Number Land type Proportion of footprint

during E–W transect (%)

2 Discontinuous urban fabric 0.1

3 Industrial or commercial units 0.0

4 Road and rail networks and associated land 0.0

6 Airports 0.0

7 Mineral extraction sites 0.0

8 Dump sites 0.0

10 Green urban areas 0.0

11 Sport and leisure facilities 0.0

12 Non-irrigated arable land 0.0

18 Pastures 0.1

20 Complex cultivation patterns 0.0

21 Land principally occupied by agriculture 0.1

with significant areas of natural vegetation

23 Broad-leaved forest 10.4

24 Coniferous forest 24.4

25 Mixed forest 16.3

26 Natural grasslands 0.1

27 Moors and heathland 8.3

29 Transitional woodland–shrub 13.8

31 Bare rocks 0.1

32 Sparsely vegetated areas 2.3

33 Burnt areas 0.0

34 Glaciers and perpetual snow 0.0

35 Inland marshes 0.1

36 Peat bogs 19.6

40 Water courses 0.5

41 Water bodies 3.7

Figure 4. Keeling plot showing PBL measurements of δ13C–

CH4 during flight on the 22 July 2012 (B720). The intercept of

−70.2± 3.0 ‰ is representative of a wetland source of CH4.

the data to 500 m intervals (equivalent to around 4 s of sam-

pling time) along x, before performing an orthogonal dis-

tance regression (Fig. 2a and b). The regression slope is

weighted by the quadrature addition of the analytical uncer-

tainty and the vertical variability of S throughout the PBL

(Fig. 3). The 1σ of the regression fit is used in the uncer-

tainty propagation to derive a representative and comprehen-

sive uncertainty on the calculated flux.

In situ measurements on board the FAAM BAe-146 are

used here to determine the wind direction and speed. The

transect, x, should ideally be aligned parallel to the wind vec-

tor. However, we note that there was a 12◦ offset between

the mean wind vector and transect x (φ, Eq. 3), while the

wind also showed some variation about the mean (24◦ at 1σ).

It then has to be assumed that mole fractions perpendicular

to the wind vector are constant. The mean wind speed was

found to be 6 (2 at 1σ)m s−1 for the longitudinal transects.

The 1σ of the wind direction and speed is used in the uncer-

tainty propagation.

Based on the observed changing vertical gradient in poten-

tial temperature, a PBL height of 1740 m a.g.l. is determined

here from both ascending and descending vertical profiles
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by the FAAM BAe-146, which show strong mixing (con-

stant potential temperature profile) between the ground and

the top of the PBL. In addition, above the PBL, both CO2

and CH4 show abrupt changes in their mole fraction and the

vertical wind speed becomes less variable (variance in the

wind speed above the boundary layer is typically less than

0.2 m2 s−2), supporting the assumption that entrainment into

and out of the boundary layer is relatively small and so can

be neglected for this exercise.

In order to estimate the uncertainty in the determination

of the PBL height we use a simple PBL growth model to

estimate the change that could reasonably be expected in the

intervening period between the nearest vertical profile and

the completion of the longitudinal transect used in the flux

calculation (approximately 1 h). The change in PBL height,

1z, over the time period 1t can be estimated using Eq. (4)

(Stull, 1988; Cambaliza et al., 2014):

1z=

(
21tw′θ ′

γ

)1/2

, (4)

where γ is the adiabatic lapse rate and w′θ ′ is the surface

sensible heat flux, which was measured in Sodankylä. Using

Eq. (4) changes in the PBL depth are estimated to be of the

order of 200 m within 1 h, which we use as an estimate of the

uncertainty in the PBL height during the transects.

Within the boundary layer some structure exists in the al-

titude profile. The CH4 standard deviation was 4.5 ppb for

the ascending profile and 1.7 ppb for the descending profile,

while for CO2 this was 1 ppm for both the ascending and

descending profiles. Some of this variability is likely to be

due to the fact that these profiles are recorded slant-wise in

the horizontal and therefore reflect both variability in vertical

mixing and the existing horizontal gradient. This variability

is included in the error propagation, as mentioned above.

As described in Sect. 3.1, Eq. (3) assumes that emissions

are immediately mixed throughout the PBL column. To es-

timate the PBL turnover time we calculate the Deardoff ve-

locity scale,w∗, which corresponds to the mean velocity of

thermals (Stull, 1988):

w∗ =

(
gZ1w′θ

′
V

θV

)1/3

, (5)

where g is the acceleration due to gravity,w′θ ′V is the surface

buoyancy flux and θV is the virtual potential temperature. The

minimum time period for an air mass to mix from the surface

to the top of the PBL is calculated to be 19 min. Complete

mixing should occur within approximately three time peri-

ods (Karion et al., 2013), in this case 57 min. This is signif-

icantly shorter than the time taken for air to advect across

the transect (up to ∼ 16 h), suggesting that the assumption of

instantaneous vertical mixing is reasonable.

The calculated fluxes are found to be

1.2± 0.5 mg CH4 h−1 m−2 and −350± 143 mg CO2 h−1

10

8

6

4

2

0

C
H

4 
flu

x,
 m

g 
hr

-1
m

-2

E
dd

y 
co

va
ria

nc
e

C
ha

m
be

r 
fo

re
st

C
ha

m
be

r 
w

et
la

nd

C
ha

m
be

r 
sc

al
ed

F
A

A
M

 B
A

e-
14

6

-600

-500

-400

-300

-200

-100

0

C
O

2  flux, m
g hr -1m

-2

Figure 5. A comparison between different techniques used to de-

termine fluxes. The box extents define the 25th and 75th per-

centiles, and whiskers are the 10th and 90th percentiles. Note: the

eddy covariance percentiles are for daytime (06:00 to 18:00 GMT)

only. Forest and wetland chamber fluxes represent summer seasonal

statistics for 60 chamber measurements (21 in forest regions and

39 in wetland regions). The scaled chamber (black circle) is deter-

mined by averaging the wetland and forest chamber fluxes as de-

scribed in Sect. 4.3. The FAAM BAe-146 and scaled chamber error

bar shows the 1σ uncertainty as described in Sect. 4.1.

(Table 2 and Fig. 5). The uncertainty in the total flux is

determined by propagating the uncertainties associated with

the individual terms in Eq. (3); these include the uncertainty

in the observed (fitted) spatial mole fraction gradient, known

variability in the wind, and boundary layer mixing height,

as identified above. Similar to previous studies (e.g. Ryerson

et al., 1998), the largest known source of uncertainty was

found to be the assumption of a single wind vector for

the whole of the transect x. Within the uncertainties, the

fluxes are in agreement whether separately derived eastward,

westward, or combined transects are used in the calculation.

The repeatability of this measured gradient further indicates

that both species were vertically well mixed since the

transects were performed at slightly different altitudes, as

shown in Fig. 2c (eastward mean= 507 m, range= 70 to

1287 m; westward mean= 717 m, range= 103 to 1382 m).

The fluxes calculated using the 11 whole-air sample mea-

surements, collected along the east–west transect, are also

in excellent agreement (see Table 2) with that from the

continuous in situ measurements. However, in the case of

CO2 this is with a large uncertainty.
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4.2 Dispersion modelling

The flux derived from the aircraft measurements has also

been tested using forward model runs with the UK Met

Office’s Numerical Atmospheric-dispersion Modelling envi-

ronment (NAME) to diagnose whether the calculated ground

flux might be expected to translate into the observed en-

hancements seen in measurements observed aloft when ad-

vected. NAME is a 3-D Lagrangian particle dispersion model

(Ryall and Maryon, 1998; Ryall et al., 1998), which is run

here using the UK Met Office’s Unified Model meteorologi-

cal fields (Cullen, 1993). A flux of 1.2 mg CH4 h−1 m−2 was

emitted from the ground in the region bounded by 20 to

28◦ E and 67 to 69.5◦ N continuously for the period from

00:00 GMT on 20 July 2012 to 17:00 GMT on 22 July 2012,

and the model was run forwards to disperse the CH4 through

the modelled atmosphere. The particle motions are calcu-

lated based on the large-scale winds, wind meander and sub-

grid-scale stochastic turbulence.

Figure 6 shows a cross section of the atmosphere that is co-

incident with flight B720. The contours show the 1 h average

mixing ratio of CH4 averaged over 67.75 to 68.00◦ N (up-

per panel for 11:00 GMT and lower panel for 16:00 GMT).

This shows the modelled increment of CH4 that comes from

the local region, based on the flux calculated by the aircraft

observations. At 11:00 GMT (the time of the eastward tran-

sect), the increment in CH4 at the eastern end of the flight

is approximately 15 to 20 ppb higher than the western part

of the transect. By 16:00 GMT, the difference in the model

has reduced to 12–15 ppb. This is because the model PBL is

well mixed, and so gradients within it decline as the day pro-

gresses and the PBL top rises. It can be seen in Fig. 6a that

the model PBL height is about 2200 m at 11:00 GMT (corre-

sponding to our eastward transect) and has increased to about

3000 m by 16:00 GMT (the time of the westward transect).

The higher late afternoon modelled PBL would act to dilute

the CH4, which can be seen in the lower modelled mixing

ratio enhancements at 16:00 GMT (Fig. 6b). However, this

dilution was not observed in the late afternoon aircraft mea-

surements, which also showed a much lower PBL height of

1740 m (Fig. 3), similar to that observed earlier in the day.

Despite this, the increment to CH4 is comparable for the

11:00 case (approximately 20 ppb in the observations, and

approximately 15–20 ppb in the dispersion model). The rea-

son for the difference in PBL height between the model and

measurement cannot currently be explained and is beyond

the scope of this study; however, these results confirm that

observed enhancements can be reasonably represented by

dispersion modelling when treating the land as a constant

source equal to that derived here, for a PBL mixing height

of ∼ 2200 m (as modelled for the 11:00 GMT transect).
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Figure 6. Dispersion model results from NAME for the mixing ratio

of CH4 originating from the local wetlands in a cross section of the

atmosphere averaged over 67.75 to 68.00◦ N and 1 h surrounding

11:00 GMT on 22 July 2012. The local wetland CH4 source was

defined as a 1.2 mg CH4 h−1 m−2 source emitted from the ground

between 20 and 28◦ E and between 67 and 69.5◦ N. Figure 6b shows

the same but for a 1 h average surrounding 16:00 GMT on the same

day.

4.3 Ground-based flux measurements

In this section, we compare the aircraft-derived flux with

seasonally averaged surface measurements to examine scal-

ability and potential sources of bias (e.g. spatial heterogene-

ity). The ground-based measurements during the MAMM

campaign comprised both chamber and eddy covariance flux

measurements, as described in Sect. 2.2. A comparison be-

tween these two techniques and the aircraft-determined flux

is complicated by the differences in their respective foot-

prints. Chambers are the smallest scale (< 1 m) and are spe-

cific to a single land type. While eddy covariance fluxes are

typically representative of 100 to 1000 m and as a result may
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Table 2. Mean fluxes determined using the FAAM BAe-146, chamber and eddy covariance techniques. All uncertainties given are as one

standard deviation (1σ). Chamber measurements are separated into the geometric mean of all seasonally averaged measurements and only

those from the 22 July 2012. A weighted mean of the wetland and forest chamber fluxes is calculated using the number of occurrences of

each land type within the east–west transect (Fig. 1b).

Flux (mg h−1 m−2)

CH4 CO2

FAAM BAe-146

Eastward transect 1.1± 0.6 −375± 202

Westward transect 1.6± 0.5 −357± 135

Both transects 1.2± 0.5 −350± 143

Whole-air samples 1.0± 0.6 −315± 368

Eddy covariance

Summer 4.5± 1.4 −135± 344

Summer day 4.5± 1.2 −309± 306

Summer night 4.4± 1.6 71± 264

22 July 2012 4.5± 0.9

22 July 2012 day 4.9± 0.6

22 July 2012 night 4.4± 1.0

Chamber

Wetland summer 4.5± 3.7

Wetland 22 July 2012 5.6± 5.6

Forest summer 0.05± 0.07

Forest 22 July 2012 −0.07± 0.05

Weighted average 1.3± 1.0

Weighted average 22 July 2012 1.5± 1.6

average the flux across several land types. The aircraft rep-

resents a regional flux, in this case > 300 km, which encom-

passes several ecosystems with air mixed over all.

During the MAMM field campaign, 60 chambers were

used to determine CH4 fluxes. Fluxes for the entire measure-

ment period, as well as those for just 22 July 2012, are given

in Table 2 and Fig. 5. Forested regions are found to have neg-

ligible net flux, varying between a small source or sink (Ridg-

well et al., 1999), while the wetlands show a wide range of

net emissions, which could be expected since the chambers

covered a wide range of soil moisture saturations.

The aircraft-derived CH4 flux is within the wide range

spanned by the forest and wetland chamber measurements

(−0.09 to 11.6 mg CH4 h−1 m−2). This might be expected

as both ecosystems are present within the aircraft’s foot-

print (Fig. 1). For a more direct comparison we perform a

weighted average of the two classes of chamber fluxes. This

was done by first determining the aircraft’s surface footprint

using the NAME model. The CORINE land cover map was

then used to identify the prevalence of the each land classi-

fication within this footprint (Table 1). Each CORINE clas-

sification was grouped as either a forest (coniferous forest,

mixed forest, transitional woodland, broad-leaved forest) or

a wetland (peat bog, moor and heathland) land type. Us-

ing this methodology, during the 22 July flight’s east–west

transect, 28 % of the land footprint was classified as wetland

and 65 % was classified as forest. These proportions were

then used to weight the averaging of the two chamber flux

categories. The result of this is 1.3± 1.0 mg CH4 h−1 m−2

(mean± standard deviation) using the summer mean cham-

bers and 1.5± 1.6 mg CH4 h−1 m−2 if just the 22 July 2012

measurements are used. Though poorly constrained, these

are both in good agreement with the aircraft-derived flux,

which is only 0.1 mg CH4 h−1 m−2 and 0.3 mg CH4 h−1 m−2

lower, respectively (Fig. 5). Uncertainties exist in this com-

parison since the partitioning is quite broad and in the as-

sumption of a zero flux for 7 % of the land area. A more

sophisticated comparison would assign measured fluxes for

each 2006 CORINE land cover. Nevertheless this simple ap-

proach provides a useful validation of the airborne calcula-

tion.

The CH4 and CO2 eddy covariance flux measurements

were calculated for the Sodankylä wetland from 1 July 2012

to 15 August 2012 (Table 2 and Figs. 7–8). CH4 cham-

ber fluxes show a wider range than the eddy covariance

fluxes, which could be expected since they covered the

dryer and wetter parts of the wetland, while the eddy co-

variance method spatially integrates these regions and as a

consequence is within this range. CH4 fluxes do not show

large variation over diurnal (Fig. 7) or weekly timescales

(Fig. 8). However, CO2 was emitted for several hours

around midnight, while uptake occurred during the day. The

mean daytime (06:00 to 18:00 GMT) eddy covariance CO2

measurement of −309 (1σ = 306) mg CO2 h−1 m−2 is only

41 mg CO2 h−1 m−2 higher than the aircraft-derived flux,

well within the measurement uncertainty.

However, the mean daytime eddy covariance CH4

flux of 4.5± 1.2 mg CH4 h−1 m−2 for the summer
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Figure 7. CH4 and CO2 hourly fluxes at Sodankylä wetland site

between 1 July and 15 August 2012 determined using the eddy co-

variance technique. CH4 diurnal variation is noted to be small. Net

CO2 uptake occurs during the day, with net emission during the

night.

period is a factor of 4 larger than the aircraft. This

is comparable with some other previous studies in

wetlands such as 4.7 mg CH4 m−2 h−1 (2004 to 2006)

and 6.2± 2.6 mg CH4 m−2 h−1 (2006 and 2007) for

Stordalen (Petrescu et al., 2008; Jackowicz-Korczynski et

al., 2010). Similar to the chamber measurements, this may

be because the eddy covariance footprint is more specific

to a single land type than the aircraft in this instance. To

test this, the same scaling was repeated using the CORINE

land cover classification but this time using the Sodankylä

wetland eddy covariance flux instead of that from the

wetland chambers, which resulted in a flux of 1.3± 0.3 mg

CH4 h−1 m−2. This then displays similarly good agreement

with the aircraft-derived flux.

4.4 Comparison against modelled wetland emission

estimates

In this section, we compare our measurement-derived CH4

emission fluxes with those predicted from wetlands in

Fennoscandia by two land surface models: JULES and HY-

BRID8. The purpose of this comparison is to investigate how

representative the regional snapshot we discuss above is, in

the context of predicted seasonal and interannual variability,

and to discuss potential sources of systematic bias.

For this comparison, runs of the JULES and HYBRID8

models were done on a 0.5◦× 0.5◦ terrestrial grid covering

Scandinavia, using the CRU-NCEP (Climatic Research Unit-

National Centers for Environmental Prediction) meteorolog-

ical data set (Viovy and Ciais, 2009). Hourly CH4 emission

fluxes from wetlands were derived between January 1980 and
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Figure 8. Daytime (06:00–18:00) CH4 and CO2 fluxes at So-

dankylä wetland site between 1 July and 15 August 2012 deter-

mined using the eddy covariance technique. Note: CO2 fluxes are

not shown for the period 14 July 2012 to 1 August 2012 as it was

not possible to calibrate the LI-7200’s CO2 channel in that period.

December 2012 (the last year currently available in the CRU-

NCEP driving meteorological data set). Table 3 summarises

the statistics derived from the modelled hourly CH4 emission

for the domain covered by the aircraft (20.0–29.0◦ E, 67.5–

68.5◦ N) for July–August 2012 and for all the July–August’s

between 1980 and 2012. The modelled fluxes for 2012 are

slightly higher but consistent with those derived from every

July and August in the 33-year model run (also shown in Ta-

ble 3).

It is evident that the two models significantly underesti-

mate (a factor ∼ 14 for JULES and Hybrid in the mean) the

CH4 emission flux in this region for July–August 2012, when

compared to our regionally representative case study. Fur-

thermore, even the upper quartile maximum monthly aver-

aged flux in the 31-year climatology (0.11 mg CH4 h−1 m−2

for JULES and 0.13 mg CH4 h−1 m−2 for HYBRID8) does

not approach the measured aircraft and ground-based re-

sults in this case study. This is possibly because of an

under-prediction of wetland extent by both models in this

region, which could be linked to the topographical data

set used and/or the absence of an organic soil type re-

lated to peatlands. Such soils would have very different hy-

draulic properties to the mineral soil types currently used

in JULES and HYBRID8. Water would be retained at

or close to the surface increasing the area of wetlands.

Model emission fluxes were derived assuming that each

grid cell is all wetland. These results were found to be

much closer to the aircraft values for both JULES (July–

August 2012: median 1.6 mg CH4 h−1 m−2, inter-quartile

range 1.4 to 1.8 mg CH4 h−1 m−2) and HYBRID8 (2012:

median 1.9 mg CH4 h−1 m−2, inter-quartile range 1.6 to

2.6 mg CH4 h−1 m−2). This suggests that underestimation of

the area of wetlands in both models is probably the ma-
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Table 3. Distribution of the modelled hourly wetland methane emission fluxes (mg CH4 m−2 h−1) for the domain (20.0–29.0◦ E, 67.5–

68.5◦ N) for two periods: July–August 2012 and the July–August climatology between 1980 and 2012.

Hourly emission flux JULES HYBRID8

(mg CH4 m−2 h−1)

July–August July–August July–August July–August

2012 1980–2012 2012 1980–2012

Number of non-zero fluxes 53 568 176 7744 53 568 176 7744

Total number 53 568 176 7744 53 568 176 7744

Minimum 0.0 0.0 0.008 −0.002

Lower quartile 0.057 0.018 0.016 0.013

Median 0.082 0.063 0.023 0.024

Upper quartile 0.11 0.11 0.126 0.097

Maximum 0.21 0.41 1.53 4.62

Mean 0.084 0.073 0.088 0.074

jor reason for the under-prediction of the wetland emission

fluxes in this region. Petrescu et al. (2010) investigated the

sensitivity to the wetland area and found a wide variation in

methane emission fluxes (37.7 to 157.3 Tg CH4 yr−1) from

wetlands and floodplains above 30◦ N for the years 2001 to

2006 for different estimates of wetland extent. The wetland

model intercomparison (Melton et al., 2013) has further high-

lighted the major challenges and uncertainties that exist in

modelling wetlands and the associated CH4 emissions.

Both the JULES and HYBRID8 models have been used

to simulate the response of past and future emissions to cli-

mate change (Gedney et al., 2004; Friend, 2010; Quiquet

et al., 2014). The results from this comparison suggest that

there are significant uncertainties when emissions are sim-

ulated at regional scales and/or at specific times. Although

our snapshot of a regionally representative flux on a single

day should not be directly extrapolated to demonstrate a sys-

tematic under-bias in the climatological Arctic wetland CH4

flux as predicted by JULES and HYBRID8, these results do

point to the important need for further such case studies from

which to build diagnostic statistics to validate such models.

Given that this study suggests an order of magnitude under-

bias in modelled fluxes, this uncertainty is potentially very

important for climate studies that model CH4 emissions sce-

narios.

5 Conclusions

As part of the MAMM field project, airborne measurements

of CH4 and CO2 were collected in the European Arctic

in summer 2012. An airborne mass balance approach was

used to derive regional-scale fluxes for the northern Scan-

dinavian wetlands from one flight on the 22 July 2012.

These were established to be 1.2± 0.5 mg CH4 h−1 m−2 and

−350± 143 mg CO2 h−1 m−2, which were comparable with

simultaneous seasonally averaged chamber and eddy covari-

ance flux measurements made in Sodankylä (within 11 % for

CO2 and 8 % for CH4 if the fluxes were scaled using the

land type). The internal consistency of the aircraft-derived

fluxes across a wide swath of Fennoscandia coupled with an

excellent statistical comparison with local seasonally aver-

aged ground-based measurements demonstrates the potential

scalability of such localised measurements to regional-scale

representativeness.

Though the fluxes calculated here do not provide informa-

tion about the wider temporal variability of fluxes, they do

provide a snapshot that can be compared with the statistical

climatology for model fluxes in the region, which is repre-

sentative of a spatial scale that is comparable with the reso-

lution of regional chemical transport and land surface mod-

els. This together with a well-characterised uncertainty mean

that these fluxes can provide a useful constraint for “bottom-

up” regional flux calculations. To this end, a comparison with

both the HYBRID8 and JULES land surface model suggests

that they both significantly underestimate the net CH4 flux

from these regions (a factor ∼ 14 for JULES and HYBRID8

in the mean).

Although our snapshot of a regionally representative flux

on a single day should not be directly extrapolated to demon-

strate a systematic under-bias in the modelled climatological

Arctic wetland methane flux, the results presented here do

point to the important need for further such case studies from

which to build diagnostic statistics to validate such models,

as this uncertainty is potentially very important for climate

studies that model CH4 emissions scenarios. Future field

campaigns and studies are planned to exploit the MAMM

airborne data set from the 2013 and 2014 flights, to derive

additional regional-scale fluxes of key greenhouse gases ei-

ther through mass balance approaches, as illustrated here, or

inverse modelling. These may provide additional information

on the consistency of the disagreement between observations

and the JULES/HYBRID8 models at high northern latitudes.
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