
Accepted Manuscript

A parallel meshless dynamic cloud method on graphic processing units
for unsteady compressible flows past moving boundaries

Z.H. Ma, H. Wang, S.H. Pu

PII: S0045-7825(14)00435-6
DOI: http://dx.doi.org/10.1016/j.cma.2014.11.010
Reference: CMA 10459

To appear in: Comput. Methods Appl. Mech. Engrg.

Received date: 12 February 2014
Revised date: 5 November 2014
Accepted date: 7 November 2014

Please cite this article as: Z.H. Ma, H. Wang, S.H. Pu, A parallel meshless dynamic cloud
method on graphic processing units for unsteady compressible flows past moving boundaries,
Comput. Methods Appl. Mech. Engrg. (2014), http://dx.doi.org/10.1016/j.cma.2014.11.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cma.2014.11.010

A parallel meshless dynamic cloud method on graphic processing
units for unsteady compressible flows past moving boundaries

Z. H. Maa,∗, H. Wangb, S. H. Puc,d

aCentre for Mathematical Modelling and Flow Analysis, School of Computing, Mathematics and Digital Technology,
Manchester Metropolitan University, Manchester M1 5GD, United Kingdom

bDepartment of Marine Technology, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway
cChengdu Aircraft Design& Research Institute, Chengdu 610041, P.R. China

dDepartment of Aerodynamics, Nanjing University of Aeronautics& Astronautics, Nanjing 210016, P.R. China

Abstract

This paper presents an effort to implement a recently proposed meshless dynamic cloudmethod

[Hong Wang et al. A study of gridless method with dynamic clouds of points for solving un-

steady CFD problems in aerodynamics,Int. J. Numer. Meth. Fluids2010; 64: 98-118] on

modern high-performance graphic processing units (GPUs) with the compute unified device ar-

chitecture (CUDA) programming model. Within the frameworkof the meshless method, clouds

of points used as basic computational stencils are distributed in the whole flow domain. The spa-

tial derivatives of the governing equations are discretised by the moving-least square scheme on

every cloud of points. Roe’s approximate Riemann solver is adopted to compute the convective

flux. A dual-time stepping approach, which iterates in physical and pseudo temporal spaces, is

employed to obtain the time-accurate solution. Simulationof steady compressible flows over a

fixed aerofoil is firstly carried out to verify the GPU implementation of the method. Then it is ex-

tended to compute unsteady flows past oscillatory aerofoils. Numerical outcomes are compared

with experimental and/or other reference results to validate the method. Significant performance

speedup of more than an order of magnitude is verified by the numerical results. Systematic anal-

ysis shows that GPU is more energy efficient than CPU for solving aerodynamic problems. This

demonstrates the potential of the proposed method to solve fluid-structure interaction problems.

Keywords: aerodynamics, oscillatory aerofoil, CUDA, graph mapping

∗Corresponding author. Tel:+44 (0)161-247-1574
Email addresses:z.ma@mmu.ac.uk (Z. H. Ma),hong.wang@ntnu.no (H. Wang),nuaapu@yahoo.com.cn

(S. H. Pu)

Preprint submitted to Elsevier November 13, 2014

1. Introduction

Unsteady flows over moving boundaries are frequently encountered in many scientific fields

such as aerodynamics, hydrodynamics and biological fluid dynamics etc. These complicated

problems play an important role in fundamental research andindustrial applications, however

they have proved extremely challenging to theoretical, experimental and numerical investiga-

tions. When dealing with them by a computational fluid dynamics (CFD) method, the motion

of boundaries need to be handled appropriately with a robustnumerical algorithm. Meanwhile,

the simulation itself is very time-consuming due to intensive computing. A persistent objective

of CFD is to devise accurate and efficient numerical methods to solve these complicated flow

problems.

During the past several decades, a new kind of numerical algorithm named meshless (or grid-

less, meshfree, particle) method has gradually attracted more and more attentions of researchers

in CFD. A distinctive feature of meshless methods is that connectivities between points are not

necessary to be considered, since they do not adopt traditional structured/unstructured mesh

topologies but employs flexible clouds of points, which are basically composed of a centre point

and several satellites, to discretise the flow domain. The derivatives of a mathematical function

in a cloud of points can be computed by the least-square curvefit, radial basis function or other

effective strategies. In the area of aerodynamics, meshless methods have been successfully ap-

plied to solve steady compressible flows [1, 2, 3, 4, 5, 6, 7]. Considering unsteady flows, Wang

et al. [8] proposed a meshless dynamic cloud method to deal with moving boundaries. A very

simple but effective algebraic mapping strategy was used in their work to adjust the distribution

of meshless points. Solid boundary penetration induced by other numerical methods was avoided

by the dynamic cloud method even for cases with relatively large displacements, such as a 30◦

pitch motion of an aerofoil (see figures 3 and 4 of [8]). This method has also been extended to

drag reduction design for an aerofoil with active flow control [9].

Until now, these aforementioned research works of meshlessmethods for steady and unsteady

flows past fixed solid bodies have mostly been carried out withserial computing on a single core

of the CPU. On the other hand, Ortega et al. [10, 11] paid attention to the parallelisation of the

finite point method on multi-core CPUs with the OpenMP programming model. They observed

unsatisfactory scalability problems and pointed out that attainable speedups on multi-core CPUs

will drop once the number of processor cores is over 4 due to the high cache miss rate and

2

limited memory bandwidth of CPU. Therefore, they suggestedto use much higher-performance

hardware platforms [11].

Nowadays, computer science is embracing a new and fast developing territorial namely GPU

computing technology, in which the graphic hardware can deliver Tera-scale single- and double-

precision floating-point operations per second in very recent years. This provides tremendous

power to scientific computing and it is extremely attractiveto the CFD community, in which

high efficiency/performance is always a requirement of numerical methods for many complicated

problems. For important GPU implementations of mesh methods, readers may refer to the works

of Karatarakis et al. [12] and Papadrakakis et al. [13] for solid mechanics problems; Bard

and Dorelli [14], Liang et al. [15], Corrigan et al. [16], Asouti et al. [17] and Kampolis et al.

[18] for fluid mechanics problems. In these works, the strategies to utilise the GPU to solve

complicated problems in solid or fluid mechanics are explained in detail. Specific techniques to

prevent thread race conditions or to improve memory performance are also provided. All of them

reported impressive speedups of the fundamental mesh basednumerical solvers, this triggered

off our intention to investigate the possibility of realising the meshless method for CFD on GPUs

in the first place. Initial success of such kind of attempt to solve steady compressible flows with

a meshless method on GPUs was reported in our recent work [19]. These inspiring works for

flows over fixed objects encourage us to further develop GPU based numerical methods to solve

more challenging unsteady compressible flows past moving boundaries. This study exhibits such

kind of an effort to accelerate the meshless dynamic method, which enjoysthe robustness to deal

with rigid and/or flexible boundaries, on modern graphic hardware.

The rest of the paper is organised as follows. Key aspects of the numerical method includ-

ing the governing equations, meshless discretisation, dual time stepping scheme and dynamic

cloud technique are described in Section2. The implementation of the meshless dynamic cloud

method on the GPU is discussed in Section3. Numerical examples of steady and unsteady flows

are given in Section4. The obtained results are compared to the experiment and/or other avail-

able reference solutions to verify the accuracy of the present method. Systematic performance

benchmarks of the method on CPU and GPU with up to one million points are also carried out.

Not only the running time costs are compared but also the energy consumptions are investigated.

The major contributions of the work may contain the following phases:

• To the best of our knowledge, we are the first to present a GPU based numerical method

3

for simulating unsteady compressible flows past moving boundaries.

• The performance of meshless dynamic cloud method is successfully improved by more

than an order of magnitude, and the GPU based computing method is more energy efficient

than the CPU.

• This work demonstrates the potential of the present GPU based algorithm for solving more

complicated fluid-structure interaction problems.

2. Numerical method

2.1. Governing equations

In a two-dimensional Cartesian coordinate system, the Euler equations in an arbitrary La-

grangian and Eulerian form can be expressed as

∂U
∂t
+
∂E
∂x
+
∂F
∂y
= 0 (1)

whereU is a vector of conservative variables,E andF are the flux terms, they are defined as

U =

ρ

ρu

ρv

ρet

, E =

ρ (u− xt)

ρu (u− xt) + p

ρv (u− xt)

ρet (u− xt) + pu

, F =

ρ (v− yt)

ρu (v− yt)

ρv (v− yt) + p

ρet (v− yt) + pv

(2)

in which,ρ is the density,p is the pressure,u andv are the components of (fluid) velocity vector

~V alongx andy axes respectively;xt andyt represent the components of velocity vector~Vt along

x andy axes of discrete points. The total energy per volumeρet is given by

ρet =
p

γ − 1
+

1
2
ρ(u2 + v2) (3)

whereγ is the ratio of specific heat coefficients (γ = 1.4 for air).

2.2. Spatial and temporal discretisation

For any cloudCi in the flow domain, the Euler equations (1) are required to be satisfied

∂U
∂t

∣∣∣∣∣
Ci

+

(
∂E
∂x
+
∂F
∂y

)

Ci

= 0 (4)

4

For simplicity, we use the subscripti to represent the cloudCi in the following. With a moving

least square curve fit [1, 3, 5], Eq. (4) can be written as

∂Ui

∂t
+

Mi∑

j=1

[(
αi j Ei j + βi j Fi j

)
−

(
αi j Ei + βi j Fi

)]
= 0 (5)

where the subscripti j indicates the midpoint between the centrei and a satellitej. Introducing a

parameterλ =
√
α2 + β2 and a vector~η = (α/λ, β/λ), Eq. (5) can be expressed as

∂Ui

∂t
+

Mi∑

j=1

(Gi j −Gi)λi j = 0 (6)

The flux functionG is evaluated by Roe’s approximate Riemann solver [8, 20]

G =
1
2

[G(UL) +G(UR) − |A|(UR − UL)] (7)

In order to improve the accuracy, the data is reconstructed by a piecewise linear interpolation

scheme and van Leer’s limiter is used to prevent spurious oscillations caused by the interpolation

[19]. The semi-discrete form of Eq. (6) can be written as

dUi

dt
+ Ri = 0 (8)

whereR represents the residual vector. In order to obtain the solution, a second-order time

differential scheme is used

3Un+1
i − 4Un

i + Un−1
i

2∆t
+ Ri

(
Un+1

i

)
= 0 (9)

A dual time-stepping approach [21] is employed to solve Eq. (9), the derivative of pseudo time

is denoted asτ
dUn+1

i

dτ
+

3Un+1
i − 4Un

i + Un−1
i

2∆t
+ Ri

(
Un+1

i

)
= 0 (10)

usingU∗ as the approximation forUn+1, the unsteady residual is defined as

R∗i
(
U∗i

)
=

3U∗i − 4Un
i + Un−1

i

2∆t
+ Ri

(
U∗i

)
(11)

The solution to Eq. (10) is the steady state of pseudo time∆τ

dU∗i
dτ
+ R∗i

(
U∗i

)
= 0 (12)

5

An explicit multi-stage Runge-Kutta scheme [21] is applied to march Eq. (12) from pseudo time

level n∆τ to level (n+ 1)∆τ,

U(0)
i =

(
U∗i

)n (13a)

U(1)
i = U(0)

i − α1∆τiR∗i
(
U(0)

i

)
(13b)

... (13c)

U(m)
i = U(m−1)

i − αm∆τiR∗i
(
U(m−1)

i

)
(13d)

... (13e)

U(p)
i = U(p−1)

i − αp∆τiR∗i
(
U(p−1)

i

)
(13f)

(
U∗i

)n+1
= U(p)

i (13g)

More details of the dual time-stepping method can be found inthe work of Jameson [21] .

2.3. Dynamic cloud technique

E1

E2

E3

SP
3

SP
1

SP
2

P

Q

SQ
2

SQ
1

SQ
3

Figure 1: Determination of the mapping coefficients (aP
i = SP

i /S, aQ
i = SQ

i /S).

As is known, the computational domain is usually defined by physical boundaries (e.g. solid

walls) and artificial boundaries (e.g. far-field boundariesfor external flows). In order to adjust

the distribution of discrete points to accommodate the motion of moving boundaries, a simple

Delaunay graph mapping approach proposed by Liu et al. [22] is employed in the present work.

In order to generate the Delaunay graph to overlay the whole flow domain, we first need to

select some representative (or all) boundary points. For this given set of boundary points, there

exists a unique triangulation known as the Delaunay criterion [22]. Since the Delaunay graph
6

covers the whole solution domain, every discrete point can be located in a triangle element of the

graph. Such triangle is named the host element for the point,and it can be used to redistribute

the nodes inside it. The essential idea to manipulate the position of a single point is shown in

Figure1, where a pointP lies inside a Delaunay graph elementT with three vertices notated

asE1, E2 andE3. The verticesE1, E2 andE3 are basically chosen from the boundary points

{EB} = {Ew}⋃{E f } (the superscriptw stands for solid wall andf indicates far field boundary) in

a computational domain. The coordinates ofP can be expressed as

xP =

3∑

i=1

aP
i xEi

, yP =

3∑

i=1

aP
i yEi

(14)

where (xEi
, yEi

) are the Cartesian coordinates of vertexEi . If S is the area ofT, andSi(i = 1,2,3)

are the areas of the sub-triangles shown in Figure1, thenai = Si/S(i = 1,2,3). For pointP, the

areas are given by

S1 =
1
2

∣∣∣∣∣∣∣∣∣∣∣∣

xp yp 1

xE2 yE2 1

xE3 yE3 1

∣∣∣∣∣∣∣∣∣∣∣∣
, S2 =

1
2

∣∣∣∣∣∣∣∣∣∣∣∣

xp yp 1

xE3 yE3 1

xE1 yE1 1

∣∣∣∣∣∣∣∣∣∣∣∣
, S3 =

1
2

∣∣∣∣∣∣∣∣∣∣∣∣

xp yp 1

xE1 yE1 1

xE2 yE2 1

∣∣∣∣∣∣∣∣∣∣∣∣
, S =

1
2

∣∣∣∣∣∣∣∣∣∣∣∣

xE1 yE1 1

xE2 yE2 1

xE3 yE3 1

∣∣∣∣∣∣∣∣∣∣∣∣
(15)

In the generated Delaunay graph, the far field boundary points may stay stationary, while

the solid wall points representing the geometrical configuration are allowed to move in the flow

field. Hence, the Delaunay graph will also move/deform. After moving/deforming the graph, a

new set of coordinates is obtained for the vertices of each graph element. It is requested that the

distribution of the point in a graph element keeps the area ratio coefficientsai as constants during

graph movement [22]. Therefore, the new coordinates of pointP can be determined as

x′
P
=

3∑

i=1

aP
i x′

Ei
, y′

P
=

3∑

i=1

aP
i y′

Ei
(16)

where (x′
Ei

, y′
Ei

) are the new coordinates for graph element nodal points. In other words, the area

ratio coefficientsai can be used to relocate the pointP in the domain [22].

Such kind of procedure is illustrated in Figure2, where pointP is mapped to pointP′ after the

movement of graph element. Since the distribution of these points is controlled by the constant

area ratio coefficients throughout the graph movement, this is very useful tokeep the relative

position of a point between its each surrounding node. Figure 3 shows the relocation of five
7

neighbouring nodes in three adjacent graph elements. The relative positions betweenP1 and its

surrounding points can be maintained if the amplitude of graph movement is not extremely large.

Consequently, if these five nodes form a meshless point cloudinitially, it can be used throughout

the graph movement without frequently changing its member nodes.

(xE1, yE1)

S3

S1

S2

(xp, yp)

(xE2, yE2)
(xE3, yE3)

(a) before movement

(x′
E1

, y′
E1

)

S′
3

S′
1

S′
2

(x′
p, y

′
p)

(x′
E2

, y′
E2

)

(x′
E3

, y′
E3

)

(b) after movement

Figure 2: Relocation of a pointP in a Delaunay element during the graph movement. The new area ratio coefficients

a′i = S′i /S
′ are equal to the original valuesai = Si/S.

P1

B

C

A

P2

P3

P4

D E

P5

(a) before movement

P1

B

C

A

P2

P3

P4

D

E

P5

(b) after movement

Figure 3: Relocation of five points in neighbouring Delaunayelements during the graph movement.

The basic steps of the dynamic cloud method are listed as follows

1. Input the cloud of points.

2. Generate a Delaunay graphG =
⋃K

k=1 Tk for the boundary points{EB}.
3. For each internal field pointP, search the host elementTP inside which it lies.

4. Compute the mapping coefficientsaP
i for point P.

5. Moving the Delaunay graph.

8

6. Relocating the points in the graph.

The information for step 2, 3 and 4 only needs to be computed once and stored in the computer

memory before the flow simulation starts.

Examples are given here to illustrate the procedure of implementing dynamic cloud for a

NACA0012 aerofoil and a NACA64A010 aerofoil with pitch motions, respectively. We first need

to input the cloud of points for the aerofoil, then generate aDelaunay graphG of boundary points

{EB} as shown in Figure4 and6. If we rotate the aerofoil about its quarter for 30o, the coordinates

of aerofoil surface points are updated as (xEw
new
, yEw

new
). Substitute the new coordinates to Eq (14),

then the coordinates of all the internal field points will be updated as illustrated in Figure5 and

7. The advantage of this approach is that intensive iterations requested by other methods like

spring-analogy technique are avoided since it only needs very simple linear algebraic operations.

Moreover, it can effectively handle cases with relatively large displacementswithout penetrating

solid boundaries as shown in Figure5 and7. Meanwhile, solid boundary penetration may occur

when other strategies such as spring analogy are utilised toadjust the clouds of points for these

cases (see Figure 3 of [8]).

Figure 4: Global and close-up views of a Delaunay graph for a single NACA0012 aerofoil.

3. Implementation on the GPU

3.1. The procedure

As is well known, a GPU computing program usually needs the CPU to input the information

from the hard drive (or elsewhere) and pre-process the data.The data is then sent from the CPU

to the GPU. The complete or partial computing task is off-loaded to the GPU. Once the task is

finished, the result is transferred back to the CPU. This general procedure for a GPU based CFD

program is illustrated in Figure8.
9

(a) Initial cloud (b) Mapped cloud (30o pitch) (c) Trailing edge close-up view

Figure 5: Dynamic cloud for a single NACA0012 aerofoil with pitch motion.

Figure 6: Global and close-up views of a Delaunay graph for a single NACA64A010 aerofoil.

(a) Initial cloud (b) Mapped cloud (30o pitch) (c) Trailing edge close-up view

Figure 7: Dynamic cloud for a single NACA64A010 aerofoil withpitch motion.

10

Start

CPU data

Output result

End

GPUCPU

GPU data

Upload

Download

Boundary conditions

RHS residual

Input Data

Preprocess CPU data

Converged?

Update

it=0, p=0

No

Yes

Advance

p>M?

Yes

No

it++

p++

it<Itmax?

Yes

No

Postprocess GPU data

Figure 8: A general procedure of GPU computing program. The CPUis responsible to input/output the data, the GPU is

recruited to tackle the computing intensive task.

11

Our original single-core CPU based meshless solver for unsteady flows was exclusively

coded in Fortran 90. It does not adopt any third-party numerical libraries. The main pro-

gram written in Fortran 90 is presented in Listing1. The most time-consuming portion is the

flow solver (the function ALEsolver), whose major steps are shown in Listing2. We use CUDA

C [23] to re-program this part of the code. Other portions of the solver including data input/out-

put and flow field initialisation are kept the same as shown in Figure 8 and Listing1. The

CUDA code for the flow solver is presented in Listing3.

Listing 1: The Fortran main program

1 program main

2 call InputData(CPU_data)

3 call FlowInit(CPU_data)

4 call DelaunayGraphGen(CPU_data)

5

6 ! solve the ALE equation on GPU

7 call ALE_solver_GPU(CPU_data)

8

9 call ResultOutput(CPU_data)

10 end program main

Listing 2: Fortran code for the ALE solver

1 subroutine ALE_solver_CPU(CPU_data)

2 physical_time: do i=0,TotalTimeStep

3 call MoveSolidBound(CPU_data)

4 call RelocatePointInGraph(CPU_data)

5

6 ! pseudo time iteration

7 pseudo_time: do it=1,InerItMax

8 do im=1,NRK

9 call residual(CPU_data)

10 call advance(CPU_data)

11 enddo

12

13 call FlowUpdate(CPU_data)

14 enddo pseudo_time

15 enddo physical_time

16 end subroutine ALE_solver()

Listing 3: CUDA code for the ALE solver

1 #ifdef __cplusplus

2 extern "C"

3 #endif

12

4 void ALE_solver_GPU(CPU_data)

5 {

6 //upload data from CPU to GPU;

7 cudaMemcpy(CPU_data, GPU_data, data_size, cudaMemcpyHostToDevice);

8

9 //physical time

10 for(int i=0;i<TotalTimeStep;i++){

11 Cuda_MoveSolidBound<<<block,grid>>>(GPU_data);

12 Cuda_RelocatePointInGraph<<<block,grid>>>(GPU_data);

13

14 //pseudo time iteration

15 for(int it=1;it<=InerItMax;it++){

16 for(int im=1;im<=NRK;im++){//Runge-Kutta stepping

17 CUDA_residual<<<block,grid>>(GPU_data);

18 CUDA_advance<<<block,grid>>>(GPU_data);

19 }

20 CUDA_FlowUpdate<<<block,grid>>>(GPU_data)

21 }

22 }

23

24 //offload data from GPU to CPU;

25 cudaMemcpy(GPU_data, CPU_data, data_size, cudaMemcpyDeviceToHost);

26 }

3.2. Hierarchy of CUDA thread and memory

Different with MPI or OpenMP, which provides coarse-grain parallelism, CUDA offers fine-

grain parallelism as thousands (or even many more) of lightweight threads can be launched on

the graphic hardware. Each thread can be properly used to deal with a computational stencil (a

mesh cell for structured/unstructured grid methods, or a cloud of points for meshlessmethods).

It can access the data stored in the memory and carry out algebraic operations on the data, etc.

CUDA uses grid and blocks to manage these threads, and every thread has a unique index.

Figure9 presents a simple layout of the CUDA thread and memory hierarchy. The CPU is

usually considered as the host, and the GPU is called the device. The data stored in the host

memory is firstly copied to the global memory of the device. Onthe device, every thread can

access the global memory. All the threads in the same block can access the shared memory

belonging to this block, each thread can have its own privateregisters. Proper use of shared

memory will greatly benefit the program performance especially when there are a lot of data reuse

[23]. It works well for structured grid methods, which can address memory with regular patterns.

13

However, for indirect addressing model based applicationssuch as unstructured grid methods,

it is difficult to utilise the shared memory due to the irregular memoryaccess pattern. As the

meshless solver indirectly addresses the data, we do not adopt the shared memory in the current

work. Using constant memory provided on GPUs may reduce the required memory bandwidth

[23]. In the present work, we use constant memory to store important parameters such as the ratio

of specific heat coefficientsγ. Adequate threads can be created on the device to accomplisha

one-to-one mapping of the CFD grid. A CUDA grid can have up to three dimensions to manage

the thread blocks and map the corresponding CFD grid.

In the present work, Both the thread block and grid are set to be one-dimensional. The

number of threadsNt in a block is usually set as times of 32, which is the size of a warp, according

to the CUDA C programming guide [23]. If the total number of meshless clouds of points isNc

in the whole flow field, then the number of thread blocksNb can be chosen as an integer number

no less thanNc/Nt. Accordingly, the blocksize is set asNt and the gridsize isNb for the CUDA

kernel functions shown in Listing3. The parameterNt can be tuned in order to obtain the optimal

performance.

Figure 9: CUDA memory and thread hierarchy. A one-to-one mapping of the CFD grid can be established if adequate

threads are created on the CUDA device.

3.3. Data structure

Fortran derived types were used in our original program to encapsulate data associated with

the same cloud of points. This made the program quite conciseand readable. Although structure

of arrays (SoA) is more coalesced in computer memory than arrays of structure (AoS), com-

14

pletely substituting AoS with SoA brings penalties to code debugging and development of an

existing large program composed of thousands of lines or even more. In case researchers prefer

not to re-design their programs from scratches but just wantto obtain satisfactory performance

speedup (> 10×) by using GPUs, AoS can still be used if this does not harm the performance too

much.

For the current study, the strategy to manage the data on GPUsis shown in Figure10(a).

Arrays of C/C++ structure are used to store the information of each cloud of points, which

include the number of points in the cloud, serial index and geometric scalar coefficients of every

satellite. Flow variables and/or their gradients can be encapsulated in a C/C++ structure of point.

Attentions need to be paid to these C/C++ structures, they should be compatible with the Fortran

derived types, which means the variables in a C/C++ structure must be in the same sequence as

those in a Fortran derived type. Otherwise, the data passed from a Fortran subroutine to a C/C++

function will possibly be corrupted by reading/writing a false address in the memory.

Figure10(b) presents a mapping of the CUDA threads to all the computational stencils, in

which every CUDA thread is responsible to deal with a corresponding cloud of points. To access

a piece of data stored in the GPU global memory from a single thread in a block, the global index

of the thread needs to computed (page 9 of [23]). In most cases, the number of threads in a block

needs to be tuned to optimise the performance of a GPU program.

3.4. CUDA thread race conditions

Attention needs to be paid to the underlying numerical method when we try to port the CPU

functions to the GPU. Some well-founded computer algorithms can not be directly converted to

CUDA kernel functions if they are not inherent parallel. A typical problem is the racing of

CUDA threads, in which no less than two threads attempt to access the same memory location

concurrently and at least one access is write. This may produce unexpected results [24].

To reveal this kind of problem, here we choose the Laplace equation as an example. If the

Laplace equation is solved on a uniform structured grid withthe Gauss-Seidel iteration method,

the value at a CFD grid pointPC can be obtained through averaging its four closest neighbours

as shown in Figure11 (left part). However, direct converting this function to CUDA is not

favourable. When a thread is trying to update the value atPc with a write operation, other four

threads may read this piece of memory at the same time. Consequently, there is a conflict

between the write and read operations, and this will lead to an unpredictable result. Hence, the
15

N − 2

11

i

i− 9
i− 2

i− 1

N − 1

N − 3

9N − 4

1

5

0

2
31

i− 4

20

Meshless points in the domain A typical cloud of points C/C++ struct Cloud

1

5

0

2
31

i− 4

20

(a) Encapsulation of clouds of points in C/C++ structure

N-4 N-2 N-1N-3i-1 i+1 i+2i0 2 31

Global memory

Thread blocks

Global threads

0 2 31

Block 0

0 2 31 0 2 31

Block j Block J − 1

Memory read/write Thread index transformC/C++ Struct of Cloud/Point

(b) GPU global memory and thread hierarchy

Figure 10: Data arrangement for clouds of points in the GPU memory. To read/write the GPU global memory, a global

index needs to be calculated by using the local thread index in a block and the number of threads in a block.

16

algorithm needs to be replaced with a chequerboard Gauss-Seidel iteration (right part of Figure

11) or other methods. The example is given here to emphasise theimportance of the concept of

parallelism for GPU computing, which we should bear in mind throughout the work.

Serial CPU function

1 void GS(float *A, const int I,

2 const int J)

3 {

4 for(int j=0;j<J;j++)

5 for(int i=0;i<I;i++){

6 int C = j*I+i; //Center point

7 int L = C-1; //Left point

8 int R = C+1; //Right point

9 int D = C-I; //Lower point

10 int U = C+I; //Upper point

11 A[C]=(A[L]+A[R]+A[D]+A[U])/4;

12 }

13 }

CUDA kernel function

1 __global__ void GS_RED_CUDA(float *A,

2 const int I, const int J, const int RED)

3 {

4 int i=blockIdx.x*blockDim.x+threadIdx.x;

5 int j=blockIdx.y*blockDim.y+threadIdx.y;

6 int C = j*I+i; //Center point

7 int L = C-1; //Left point

8 int R = C+1; //Right point

9 int D = C-I; //Lower point

10 int U = C+I; //Upper point

11 if(i<I-1&&j<J-1&&(i+j)%2==RED)

12 A[C]=(A[L]+A[R]+A[D]+A[U])/4;

13 }

Figure 11: A five-point Gauss-Seidel iteration method, serial Vs parallel. Chequerboard GS iteration is used on the GPU

to prevent thread racing problem, which will cause conflict read/write operations.

(a) Pmid and the pair:Pleft–Pright (b) a solution point and its satellites

Figure 12: Two strategies to loop over all the solutions points in the flow field. Left: loop over every point pair; Right:

loop over every solution point, aided with a small loop over its surrounding nodes (satellites).

Listing 4: A Fortran subroutine to compute spatial derivatives∂ρ/∂x . Point-pair loop, please refer to Figure12(a).

1 subroutine FlowDerivativeCPU(CPU_data)

2 integer::pmid,pLeft,pRight

3

4 do pmid=1,PmidTotal

17

5 pLeft=Left(pmid)

6 pRight=Right(pmid)

7 dRhodx(pLeft)=dRhodx(pLeft)+alphaLeft(pmid)*rho(Right)

8 dRhodx(pRight)=dRhodx(pRight)+alphaRight(pmid)*rho(Left)

9 end do

10 end subroutine FlowDerivativeCPU

Listing 5: A thread-racing GPU kernel function for∂ρ/∂x. Point-pair loop, please refer to Figure12(a).

1 __global__ void FlowDerivativeGPU_A(GPU_data)

2 {

3 //index midpoint

4 int pmid=blockDim.x*blockIdx.x+threadIdx.x;

5

6 //derivative of density

7 pLeft=Left[pmid]

8 pRight=Right[pmid]

9 dRhodx[pLeft]+=alphaLeft[pmid]*rho[pRight];

10 dRhodx[pRight]+=alphaRight[pmid]*rho[pLeft];

11 }

12 }

Listing 6: A thread-racing-free GPU kernel function for∂ρ/∂x. Hierarchy loop, please refer to Figure12(b)

1 __global__ void FlowDerivativeGPU_B(GPU_data) { //index meshless cloud int

2 i=blockDim.x*blockIdx.x+threadIdx.x;

3

4 //derivative of density

5 for(int j=0;j<M;j++){

6 dRhodx[i]+=alpha[j]*Rho[C[i][j]];

7 }

8 }

Similarly, all the GPU kernel functions developed for the meshless dynamic cloud method

must preclude thread race conditions. When computing spatial derivatives of a mathematical

function or the convective fluxes on the CPU, we can loop over every pair of pointsPleft and

Pright as shown in Figure12(a). This method can be simply named point-pair loop (PPL). The

corresponding Fortran code is shown in Listing4. Directly porting this code to the GPU will

lead to a thread-racing kernel function as shown in Listing5.

To prevent race conditions, we may choose to have a hierarchyloop (HL), which has an

outer loop for every solution point and an inner small loop for its surrounding nodes within

the same point cloud. The hierarchy loop shown in Figure12(b)can successfully prohibit race

18

conditions and is suitable for parallel computing. The corresponding thread-racing-free GPU

kernel function is shown in Listing6. The hierarchy loop used in the present work is very

similar to the redundant computation technique proposed byCorrigan et al. (Section 3.2 of [16]).

On the CPU, the performance of PPL is much better than HL. Thiscan be seen from Table1,

which lists the running time costs of the HL-based and PPL-based functions for computing the

derivative∂ρ/∂x on a single CPU core. Compared to PPL, HL needs extra 39.2%∼ 52.3% CPU

time. However, HL is parallel friendly while PPL will cause race conditions on the GPU.

Table 1: CPU run time costs of the functions for computing∂ρ/∂x with hierarchy loop (HL) and point-pair loop (PPL).

Both functions are executed 50000 times on a single CPU core. Compared to PPL, HL needs extra 39.2%∼ 52.3% CPU

time.

Case Number of points HL cost (s) PPL cost (s) HL/PPL

1 3142 3.62 2.60 139.2%

2 5557 6.55 4.62 141.8%

3 8993 11.19 7.59 147.4%

4 15198 17.64 11.58 152.3%

3.5. Hardware and software platform

All the following numerical simulations presented in this paper are performed on a Linux

workstation equipped with a Intel Xeon E5645 CPU (12M cache,2.40 GHz, 6 cores) and 24GB

RAM. The maximum power consumption of the CPU is 80w, so this is roughly 13.33w for a

single core. Two NVIDIA graphics cards Quadro 2000 and TeslaC2075 are installed on the

workstation. The specifications of the two graphic cards arelisted in Table2. The operating

system is Ubuntu 10.10 64-bit. We use PGI Fortran and NVCC to compile Fortran and CUDA C

codes respectively. The optimisation level for each compiler is set to-O3 without debugging and

profiling options. Two librarieslstdc++ (C++ run time library) andlibcudart (CUDA run time

library) need to be linked to the object files in the final assembling stage in order to guarantee the

executable program be generated successfully.

19

4. Numerical results

In order to verify our method on the GPU, we start with compressible steady flows over

a fixed NACA0012 aerofoil. Then we extend the method to unsteady flows past oscillatory

NACA0012 and NACA64A010 aerofoils. No-penetration condition is adopted on the aerofoil

surface and non-reflection condition is applied on the far-field boundary. Two important param-

etersspeedupandenergy consumption ratiowill be used in the following sections to indicate the

performance of GPUs regarding the computing speed and energy efficiency.Speedupis defined

as the ratio of CPU running time to GPU running time.Energy consumption ratiois calculated by

dividing the GPU energy consumption with the CPU energy consumption. We need to point out

that the energy consumption is obtained through multiplying the processor’s maximum power

consumption with its running time. Throughout our work, theCPU program is executed on

a single core, therefore the actual CPU energy consumption is divided by the number of cores

inside it .

4.1. Steady flows over a NACA0012 aerofoil

The flow condition for this case isM∞ = 0.8 with angle of attackα = 1.25◦. The number

of points distributed in the domain is 5,557. This is a classical test to benchmark the numerical

method’s capability to capture shock waves correctly regarding the position and strength. On the

upper surface of the aerofoil, a strong shock appears near 0.6 chord length. On the lower surface,

a weak shock forms around 0.375 chord length. These shock waves are clearly shown in the

right part of Figure13. The pressure coefficients around the aerofoil surface are depicted in the

left part of the figure, in which the solid line is the present work computed on Tesla C2075, the

square dot is Pulliam and Steger’s result [25]. A cell-centred finite volume method with the JST

(Jameson-Schmidt-Turkel) scheme [26] is also utilised to solve this problem and the solution is

represented by the cross. Obviously, the present result agrees well with the other solutions. The

CPU and GPU running time costs for this case are presented in Table3. It is clearly shown that

we achieve speedups of 10.86 and 32.92 on Quadro 2000 and Tesla C2075 cards respectively. At

the same time, it is easy to find that Quadro and Tesla are abouttwice energy efficient of a Intel

Xeon E5645 core as indicated in Table3.

In order to investigate the performance of these two GPUs when different number of points

are used, we carry out a systematic benchmark of the meshlesssolver. The number of points

20

distributed in the domain varies from two thousands to one million. The meshless cloud with one

million points occupies about 220MB memory on the GPUs. Therefore, the Quadro 2000 card

has the capacity to handle about four million points and the Tesla C2075 card can handle about

25 million points. For cases with even more points, multi-GPU strategy needs to be considered.

However this is beyond the scope of the current paper. We are planning to investigate this issue

in our future work.

Figure14 shows the running time speedups of the two GPUs. Quadro 2000 gives a good

speedup rising from 9.5 to more than 13 when the number of points is increased, its energy con-

sumption ratio decreases from 48.78% to 34.84% (the lowest value is 33.78%). On Tesla C2075,

at the same time, the running time speedup gradually rises from 26 to 56 with a corresponding

energy consumption ratio dropping from 65.79% to 30.49%.

−1.5

−1

−0.5

0

0.5

1

1.5
0 0.25 0.5 0.75 1

Cp

x/c

Present
FVM

Pulliam

Figure 13: Transonic steady flows over the NACA0012 aerofoilfor M∞ = 0.8, α = 1.25◦. Left: the pressure coeffi-

cients around the aerofoil computed by the meshless solver on Tesla C2075 GPU, finite volume method (with the JST

scheme [26]) and Pulliam and Steger’s result [25]. Right: pressure contours in the flow field computed by the present

method. The number of points distributed in the domain is 5,557.

4.2. Unsteady flows over an oscillatory NACA0012 aerofoil

A standard AGARD test case of an oscillating NACA0012 aerofoil is considered here. For

this case, the aerofoil rotates about its quarter chord withthe instantaneous angle of attack given

21

Table 2: Specifications of Intel Xeon E5645 CPU, NVIDIA Quadro 2000 and Tesla C2075 graphic cards. Throughout

our work, the running time and energy consumption of the CPU refer to a single core.

Intel Xeon E5645 Quadro 2000 Tesla C2075

Clock Rate 2.4 GHz 1.25 GHz 1.15 GHz

Global memory 24 GB 1 GB 6 GB

Shared memory – 48 KB 48 KB

Registers per block – 32768 32768

Number of multiprocessor 1 4 14

Cores per multiprocessor 6 48 32

Total number of cores 6 192 448

Compute capability – 2.1 2.0

Max power consumption 80 w 62 w 225w

Max power consumption per core 13.33 w 0.32 w 0.50 w

Table 3: CPU and GPU running time costs of the meshless solver for steady flows over the NACA0012 aerofoil for

M∞ = 0.8, α = 1.25◦. The running time and energy consumption of the CPU refer to a single core. (The number

of points distributed in the domain is 5,557. The number of Runge-Kutta iterations is fixed to 10,000 for comparison

purpose.)

Device Intel Xeon E5645 Nvidia Quadro 2000 Nvidia Tesla C2075

Wall time(s) 465.80 42.89 14.15

Speedup – 10.86 32.92

Energy consumption 100% 42.74% 51.28%

22

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

S
p
ee

d
u
p

Number of points (×106)

Tesla C2075
Quadro 2000

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
n
er

gy
co

n
su

m
p
ti

on
ra

ti
o

Number of points (×106)

Tesla C2075
Quadro 2000

Figure 14: Systematic benchmark of the meshless solver for steady flows on two CUDA supported graphic cards. Left:

running time analysis; Right: energy consumption analysis. Speedup is defined as the ratio of CPU running time to GPU

running time. The running time and energy consumption of the CPUrefer to a single core. The running time cost for

numerical simulations can be dramatically reduced by more than an order of magnitude on GPUs, which are also more

energy efficient.

by

α (t) = αm + α0 sin(ωt) (17)

whereαm is the mean angle of attack,α0 is the pitching range andω is the angular frequency.

The angular frequencyω is related to the reduced frequency given by

κ = ωc/2U∞ (18)

wherec is the chord length of the aerofoil andU∞ is the free-stream speed of the flow. The case

is solved with the following conditions:M∞ = 0.755,αm = 0.016◦, α0 = 2.51◦, κ = 0.0814. The

computational domain is discretised by 5,557 points, among which 337 nodes are distributed

on the aerofoil. Prior to performing the unsteady simulation, a steady flow solution is firstly

computed with the specified flow conditionsM∞ = 0.755 andαm = 0.016◦. The simulation of

the unsteady flow field is initiated once the steady solution converges. The unsteady computation

is carried out using 64 real-time steps in every oscillationperiod. Within each real-time step, it

takes about 500 to 600 iterations to reduce the residual by more than four orders of magnitude.

For this case, we compute ten oscillation periods in total.

Instantaneous lift coefficient CL and moment coefficient CM versus angle of attack during

the oscillatory motion are presented in Figure15, and they agree well with Landon’s experiment
23

−0.5

−0.25

0

0.25

0.5

−3 −2 −1 0 1 2 3

C
L

α(◦)

Present

Experiment

Batina

Kirshman

(a) Lift coefficient

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

−3 −2 −1 0 1 2 3

C
M

α(◦)

Present

Experiment

Batina

Kirshman

(b) Moment coefficient

Figure 15: Comparison of lift and moment coefficients with Landon’s experiment [27] (black dot), Batina’s numerical

result [28] (red cross) and Kirshman’s computation [29] (green star) for the oscillatory NACA0012 aerofoil.

−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

R
e(

C
p
1
)

x/c

Experiment
Present

Kirshman

(a) Real component of first mode

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1

Im
(C

p
1
)

x/c

Experiment
Present

Kirshman

(b) Imaginary component of first mode

Figure 16: Fourier decomposition of the surface pressure coefficients for an oscillatory NACA0012 aerofoil (black dot is

Landon’s result [27], dashed line is Kirshman’s solution [29]).

24

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0 50 100 150 200 250 300 350 400 450

C
L

t

(a) Lift coefficient

−0.02

−0.01

0

0.01

0.02

0 50 100 150 200 250 300 350 400 450

C
M

t

(b) Moment coefficient

Figure 17: Time history of the computed lift and moment coefficients for NACA0012 aerofoil.

[27], Batina’s computation [28] and Kirshman’s simulation [29]. Figure16 illustrates the first

Fourier mode of the surface pressure coefficient, where the real component is depicted in the left

part and the imaginary component is shown in the part. Apparently, the present result is in a good

agreement with the experiment [27] and Kirshman’s computation [29]. Figure17shows the time

history of the lift and moment coefficients for ten oscillation cycles. The periodic phenomenon

is well established from the second cycle as shown in the figure.

We list the running time costs for different compute hardwares in Table4. It takes the CPU

30.41 seconds to compute a real time step. This is shortened to 3.22 seconds by the Quadro

2000 graphic card with a speedup of 9.44. The Tesla GPU achieves a speedup of 29.81 as it

only spends 1.02 seconds. More than fives hours’ CPU time can be dramatically reduced to less

than eleven minutes by Tesla C2075 for the total ten cycles asshown in Figure21. The energy

consumption ratio of Quadro card is 49.26% and it is 56.50% for Tesla card.

4.3. Unsteady flows over an oscillatory NACA64A010 aerofoil

Another standard AGARD test case of an oscillating NACA64A010 aerofoil is considered.

For this test, the aerofoil rotates about its quarter chord with the instantaneous angle of attack

indicated by the same equation (17). The angular frequencyω is related to the reduced frequency

κ defined by Eq. (18). This case is simulated with the following conditions:M∞ = 0.796,αm

= 0.0◦, α0 = 1.01◦, κ = 0.202. There are 4006 points in the flow domain and 200 nodes are

25

Table 4: Pseudo time iteration costs of the meshless solver forunsteady flows over the NACA0012 aerofoil. The running

time and energy consumption of the CPU refer to a single core. (The number of points distributed in the domain is 5,557.

The maximum number of sub iterations is 1000.)

Device Intel Xeon E5645 Nvidia Quadro 2000 Nvidia Tesla C2075

Wall time(s) 30.41 3.22 1.02

Speedup – 9.44 29.81

Energy consumption 100% 49.26% 56.50%

distributed on the aerofoil surface. Once the steady solution converges forM∞ = 0.796 andαm

= 0.0◦, the unsteady computation is started and kept for ten oscillation periods. Each period is

divided by 64 chunks. For this case, it takes about 150 pseudo-time iterations for each real-time

step to reduce the residual by four orders of magnitude.

Instantaneous lift coefficient CL and moment coefficient CM versus angle of attack during

the oscillatory motion are presented in Figure18. The present computed lift coefficient agrees

well with Davis’ experiment [30], Hsu & Jameson’s inviscid solution [31, 32] and Liu & and

Ji’s viscous result [33]. Inspecting the moment coefficient, it’s not difficult to find that there is a

relative big discrepancy between the experiment and all thenumerical computations. Our result is

in a good agreement with Hsu & Jameson’s solution, but apparently both of the inviscid solutions

over predict the amplitude of moment coefficient. While Liu & Ji’s viscous result is closer to the

experiment regarding the minimum and maximum moment coefficients. The real and imaginary

components of the first Fourier mode for the surface pressurecoefficients are depicted in Figure

19. Apparently, our computation is in a satisfactory agreement with the experiment and other

numerical solutions. Time history of the lift and moment coefficients is shown in Figure20, the

periodic phenomenon is well established from the third cycle.

The pseudo-time iteration costs are listed in5. Quadro 2000 performs relatively well as it

spends 0.588 seconds to compute a real-time step, which gives a speedup of 8.48 compared to

the CPU. While it is very interesting to note that Tesla C2075 provides a 23.97× speedup, it takes

this device only 0.208 seconds to complete a real-time step. Almost one hour’s CPU work can

be finished within three minutes as shown in Figure21. Both Quadro 2000 and Tesla C2075 are

more energy efficient than the CPU for this case.

26

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

−1.5 −1 −0.5 0 0.5 1 1.5

C
L

α(◦)

Present
Experiment

Liu
Hsu

(a) Lift coefficient

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

−1.5 −1 −0.5 0 0.5 1 1.5

C
M

α(◦)

Present
Experiment

Liu
Hsu

(b) Moment coefficient

Figure 18: Comparison of lift and moment coefficients with Davis’s experiment [30] (black dot), Liu & Ji’s numerical

result [33] (red cross) and Hsu & Jameson’s computation [31, 32] (green star) for the oscillatory NACA64A010 aerofoil.

−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

R
e(

C
p
1
)

x/c

Present
Experiment

Liu
Wang Gang

(a) Real component of first mode

−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1

Im
(C

p
1
)

x/c

Present
Experiment

Liu
Wang Gang

(b) Imaginary component of first mode

Figure 19: Fourier decomposition of the surface pressure coefficients for an oscillatory NACA64A010 aerofoil (black

dot is Davis’s experiment [30], red cross is Liu and Ji’s numerical result [33], green dashed line is Wang et al’s compu-

tation [34]).

27

−0.12

−0.08

−0.04

0

0.04

0.08

0.12

0 20 40 60 80 100 120 140 160 180

C
L

t

(a) Lift coefficient

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0 20 40 60 80 100 120 140 160 180

C
M

t

(b) Moment coefficient

Figure 20: Time history of the computed lift and moment coefficients for NACA64A010 aerofoil.

Table 5: Pseudo time iteration costs of the meshless solver forunsteady flows over the NACA64A010 aerofoil. The

running time and energy consumption of the CPU refer to a singlecore. (The number of points distributed in the domain

is 4,006. The maximum number of sub iterations is 1000.)

Device Intel Xeon E5645 Nvidia Quadro 2000 Nvidia Tesla C2075

Wall time(s) 4.985 0.588 0.208

Speedup – 8.48 23.97

Energy consumption 100% 54.94% 70.42%

28

0

60

120

180

240

300

360

NACA0012 NACA64A010

W
al

l
ti

m
e

(m
in

u
te

)

9.44×
29.81× 8.48×

23.97×

Intel Xeon E5645
Quadro 2000
Tesla C2075

Figure 21: Total running time cost of ten oscillation cycles for NACA0012 and NACA64A010 aerofoils. The running

time of the CPU refers to a single core.

5. Conclusions

The original single-core CPU based meshless dynamic cloud method is successfully ported

to many-core programmable CUDA supported GPUs. C/C++ structures compatible with For-

tran derived types are utilised to enclose data for meshlessclouds of points, which are stored

in the global memory of GPUs. Numerical simulation of steadycompressible flows is firstly

conducted to verify the underlying method. It is further extended to compute unsteady com-

pressible flows over oscillatory aerofoils. The results arevalidated through detailed comparison

with experiments and other reference solutions. Systematic analysis reveals that the meshless

dynamic method is successfully accelerated by more than an order of magnitude, and it takes

the GPU less energy to complete the same task compared to the CPU. Our next step’s work will

focus on fluid-structure interaction problems such as aerofoil/wing flutter prediction. We will

also try to solve multi-objective optimisation problems for various real-word design problems by

the present method coupled with evolutionary algorithms.

References

[1] J. T. Batina, A gridless Euler/Navier-Stokes solution algorithm for complex-aircraft applications, in: 31st

Aerospace Sciences Meeting & Exhibit, 1993, AIAA Paper 93-0333.

29

[2] R. Löhner, C. Sacco, E. Õnate, S. Idelsohn, A finite point method for compressible flow, International Journal for

Numerical Methods in Engineering 53 (8) (2002) 1765 – 1779.doi:10.1002/nme.334.

[3] Z. Ma, H. Chen, C. Zhou, A study of point moving adaptivity in gridless method, Computer Methods in Applied

Mechanics and Engineering 197 (21-24) (2008) 1926–1937.doi:10.1016/j.cma.2007.12.012.

[4] K. Morinishi, An implicit gridless type solver for the Navier-Stokes equations, Computational Fluid Dynamics

Journal Special Issue (2001) 551–560.

[5] N. Munikrishna, N. Balakrishnan, Turbulent flow computations on a hybrid cartesian point distribution using mesh-

less solver LSFD-U, Computers & Fluids 40 (2011) 118–138.doi:10.1016/j.compfluid.2010.08.017.

[6] D. Sridar, N. Balakrishnan, An upwind finite difference scheme for meshless solvers, Journal of Computational

Physics 189 (1) (2003) 1–29.doi:10.1016/S0021-9991(03)00197-9.

[7] E. Ortega, E. Õnate, S. Idelsohn, A finite point method for adaptive three-dimensional compressible flow calcula-

tions, International Journal for Numerical Methods in Fluids 60 (9) (2009) 937 – 971.doi:10.1002/fld.1892.

[8] H. Wang, H.-Q. Chen, J. Periaux, A study of gridless methodwith dynamic clouds of points for solving unsteady

CFD problems in aerodynamics, International Journal for Numerical Methods in Fluids 64 (1) (2010) 98–118.

doi:10.1002/fld.2145.

[9] H. Wang, J. Leskinen, D.-S. Lee, J. Periaux, Active flow control of airfoil using mesh/meshless methods coupled

to hierarchical genetic algorithms for drag reduction design, Engineering Computations 30 (4) (2013) 562 – 580.

doi:10.1108/02644401311329370.

[10] E. Ortega, E. Õnate, S. Idelsohn, R. Flores, A meshless finite point method forthree-dimensional analysis of com-

pressible flow problems involving moving boundaries and adaptivity, International Journal for Numerical Methods

in Fluids 73 (2013) 323–343.doi:10.1002/fld.3799.

[11] E. Ortega, E. Oate, S. Idelsohn, R. Flores, Comparative accuracy and performance assessment of

the finite point method in compressible flow problems, Computers &Fluids 89 (0) (2014) 53 – 65.

doi:http://dx.doi.org/10.1016/j.compfluid.2013.10.024.

[12] A. Karatarakis, P. Karakitsios, M. Papadrakakis, GPU accelerated computation of the isogeometric anal-

ysis stiffness matrix, Computer Methods in Applied Mechanics and Engineering 269 (2014) 334–355.

doi:10.1016/j.cma.2013.11.008.

[13] M. Papadrakakis, G. Stavroulakis, A. Karatarakis, A new era in scientific computing: Domain decomposition

methods in hybrid CPU–gpu architectures, Computer Methods inApplied Mechanics and Engineering 200 (13-16)

(2011) 1490–1508.doi:10.1016/j.cma.2011.01.013.

[14] C. M. Bard, J. C. Dorelli, A simple GPU–accelerated two-dimensional muscl–hancock solver for ideal magneto-

hydrodynamics, Journal of Computational Physics 259 (2014) 444–460.doi:10.1016/j.jcp.2013.12.006.

[15] S. Liang, W. Liu, L. Yuan, Solving seven-equation model for compressible two-phase flow using multiple GPUs,

Computers & Fluids(in press).doi:10.1016/j.compfluid.2014.04.021.

[16] A. Corrigan, F. F. Camelli, R. Lhner, J. Wallin, Running unstructured grid-based CFD solvers on mod-

ern graphics hardware, International Journal for NumericalMethods in Fluids 66 (2) (2011) 221–229.

doi:10.1002/fld.2254.

[17] V. G. Asouti, X. S. Trompoukis, I. C. Kampolis, K. C. Giannakoglou, Unsteady CFD computations using vertex-

centered finite volumes for unstructured grids on Graphics Processing Units, International Journal for Numerical

30

Methods in Fluids 67 (2) (2011) 232–246.doi:10.1002/fld.2352.

[18] I. Kampolis, X. Trompoukis, V. Asouti, K. Giannakoglou, CFD-based analysis and two-level aerodynamic opti-

mization on graphics processing units, Computer Methods in Applied Mechanics and Engineering 199 (2010) 712

– 722.doi:10.1016/j.cma.2009.11.001.

[19] Z. Ma, H. Wang, S. Pu, GPU computing of compressible flow problems by a meshless method with space-filling

curves, Journal of Computational Physics 263 (2014) 113–135. doi:10.1016/j.jcp.2014.01.023.

[20] P. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational

Physics 43 (2) (1981) 357 – 372.doi:10.1016/0021-9991(81)90128-5.

[21] A. Jameson, Time dependent calculations using multigrid,with applications to unsteady flows past airfoils and

wings, in: AIAA 10th Computational Fluid Dyanmics Conference, 1991, AIAA 91-1956.

[22] X. Liu, N. Qin, H. Xia, Fast dynamic grid deformation basedon delaunay graph mapping, Journal of Computational

Physics 211 (2) (2006) 405–423.doi:10.1016/j.jcp.2005.05.025.

[23] NVIDIA, CUDA C programming guide(2012).

URL http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[24] J. Balfour,CUDA threads and atomics(2011).

URL http://mc.stanford.edu/cgi-bin/images/3/34/Darve_cme343_cuda_3.pdf

[25] T. Pulliam, J. Steger, Recent improvements in efficiency, accuracy, and convergence for implicit approximate fac-

torization algorithms, in: AlAA 23rd Aerospace Sciences Meeting, Vol. 85, 1985, p. 0360.

[26] A. Jameson, W. Schmidt, E. Turkel, et al., Numerical solutions of the Euler equations by finite volume methods

using Runge-Kutta time-stepping schemes, AIAA paper 81 (1981) 1259.

[27] R. Landon, NACA0012 oscillatory and transient pitching, Tech. rep., AGARD Report 702 (1982).

[28] J. T. Batina, Unsteady euler airfoil solutions using unstructured dynamic meshes, AIAA Journal 28 (1990) 1381–

1388.

[29] D. Kirshman, F. Liu, Flutter prediction by an euler methodon non-moving cartesian grids with gridless boundary

conditions, Computers & Fluids 35 (6) (2006) 571 – 586.doi:10.1016/j.compfluid.2005.04.004.

[30] S. Davis, NACA 64A010 (NASA AMES Model) oscillatory pitiching, Tech. rep., AGARD-R-702 (1982).

[31] J. M. Hsu, A. Jameson, An implicit-explicit hybrid scheme for calculating complex unsteady flows, in: 40th AIAA

Aerospace Sciences Meeting and exhibit, 2002.

[32] J. M.-J. Hsu, An implicit-explicit flow solver for complexunsteady flows, Ph.D. thesis, STANFORD UNIVERSITY

(2004).

[33] F. Liu, S. Ji, Unsteady flow calculations with a multigridNavier-Stokes method, AIAA JOURNAL 34 (1996)

2047–2053.

[34] G. WANG, Y. dan SUN, Z. yin YE, Gridless solution method for two-dimensional unsteady flow, Chinese Journal

of Aeronautics 18 (1) (2005) 8 – 14.doi:http://dx.doi.org/10.1016/S1000-9361(11)60275-6.

31

