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Abstract 

The Kalahari of southern Africa is characterised by sparse vegetation interspersed with microbe-

dominated biological soil crusts (BSC) which deliver a range of ecosystem services including soil 

stabilisation and carbon fixation. We characterised the bacterial communities of BSCs (0-1 cm depth) 

and the subsurface soil (1-2 cm depth) in an area typical of lightly grazed Kalahari rangelands, 

composed of grasses, shrubs, and trees. Our data add substantially to the limited amount of existing 

knowledge concerning BSC microbial community structure, by providing the first bacterial 

community analyses of both BSCs and subsurface soils of the Kalahari region based on a high 

throughput 16S ribosomal RNA gene sequencing approach. BSC bacterial communities were distinct 

with respect to vegetation type and soil depth, and varied in relation to soil carbon, nitrogen, and 

surface temperature. Cyanobacteria were predominant in the grass interspaces at the soil surface (0-1 

cm) but rare in subsurface soils (1-2 cm depth) and under the shrubs and trees. Bacteroidetes were 

significantly more abundant in surface soils of all areas even in the absence of a consolidated crust, 

whilst subsurface soils yielded more sequences affiliated to Acidobacteria, Actinobacteria, 
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Chloroflexi, and Firmicutes. The common detection of vertical stratification, even in disturbed sites, 

suggests a strong potential for BSC recovery after physical disruption, however severe depletion of 

Cyanobacteria near trees and shrubs may limit the potential for natural BSC regeneration in heavily 

shrub-encroached areas.  

Introduction 

Soils are vital for agricultural productivity, biodiversity and carbon storage (Stringer 2008), properties 

that are dependent upon the presence and activities of soil microbial communities (Brussard 2012). 

Most studies on soil microbes have focused on productive agricultural systems and typically target 

bulk soil or the plant-associated rhizosphere (e.g. Rousk et al. 2010; Pereira e Silva et al. 2012; Fierer 

et al. 2012a; Phosri et al. 2012). Because drylands typically support a patchy vegetation cover, light 

reaches the soil surface in plant interspaces and facilitates the formation of a complex autotrophic and 

heterotrophic microbial community, which binds soil into a crust. These biological soil crusts (BSC) 

are a major component of dryland biodiversity (Büdel et al. 2009) and of global carbon and nitrogen 

cycles (Elbert et al. 2012). However, we have very little information on the microbial content of 

dryland soils and BSCs, and even less on how the soil microbes affect dryland ecosystem function. A 

key factor is the lack of a detailed characterisation of the microbial composition of BSCs, with the 

exception of a few important groups such as the Cyanobacteria (e.g. Dojani et al. 2013). Addressing 

this research gap is essential if future management and conservation of drylands is to be effective in 

the face of increasing climatic and anthropogenic pressures (Stringer et al. 2012). This is a major area 

of concern because drylands cover approximately 40 % of the global land surface and support 38 % of 

the human population (Reynolds et al. 2007).  

Many of the ecosystem functions of BSCs are attributed to Cyanobacteria, which comprise a large 

fraction of BSC biomass (Gundlapally and Garcia-Pichel 2006). Cyanobacteria can sequester carbon 

through photosynthesis and fix nitrogen (Elbert et al. 2012), enabling BSCs to perform similar 

ecosystem functions to plants (Bowker et al. 2010). BSCs also facilitate numerous ecosystem services 

of importance to land management, conservation and productivity (Thomas 2012). These include soil 
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stabilisation (Thomas and Dougill 2007), nitrogen fixation (Aranibar et al. 2003), moisture retention 

(Menon et al. 2011), and modulation of surface runoff (Eldridge and Greene 1994; Belnap 2006). 

Despite the recognition of a significant non-phototrophic component of BSC communities (Garcia-

Pichel et al. 2003, Bowker et al. 2010) there have been relatively few studies characterising 

functionally important bacterial heterotrophs in BSCs. Most studies of dryland BSC communities 

have used a combination of cultivation and molecular 16S rRNA gene fingerprinting techniques 

followed by identification of isolates and molecular types by sequencing. These methods have 

revealed much about BSC community structure, including relationship to ecosystem functioning 

(Castillo-Monroy et al. 2011), demonstration of vertical stratification (Garcia-Pichel et al. 2003), 

similarity of diversity regardless of nearby plants (Nagy et al. 2005), and identification of numerically 

dominant phyla (e.g. Gundlapally and Garcia-Pichel 2006). However, the methodology employed in 

these studies severely limits microbial identification to no more than a few hundred species or 

operational taxonomic units (OTUs). This is insufficient to make rigorous community comparisons, 

particularly in a well-replicated study where more samples must be identified, thus yielding a lower 

number of sequences per sample. Current high-throughput sequencing technologies such as 454 

pyrosequencing overcome this practical limitation and have recently been used by Steven et al. (2013) 

to reveal differences in BSC and soil bacterial community structure in relation to parent material in 

Colorado, USA. In a broader study, Fierer et al. (2012b) went a step further by performing a cross-

biome metagenomic survey of soil (0-5 cm depth) microbial communities in tandem with a high-

throughput phylogenetic survey, enabling a comparison of functional gene frequencies as well as 

microbial taxa. This study showed that hot and cold desert communities are quite distinct from forest, 

grassland and tundra on both a taxonomic and functional level.  

In this paper we present the first description of bacterial community structure within BSCs and soils 

of the Kalahari in the south west of Botswana, and assess niche partitioning with respect to depth and 

nearby vegetation based on high-throughput sequencing of the bacterial 16S rRNA gene. Weakly 

developed BSCs in the Kalahari Sand soils are found in large areas that are subjected to disturbance 

by livestock and wildlife activity, which prevents succession into more developed stages (Thomas and 
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Dougill 2006). Grazing also selectively removes palatable grasses and eventually leads to woody 

shrub encroachment which renders the land useless for continued grazing (Thomas 2012). Thus, both 

vegetation and co-occurring BSC cover in Kalahari rangelands are strongly affected by human 

activity and can be influenced by land management decisions relating to factors such as animal 

stocking density, fencing, and water access.  

Our hypothesis is that landscape impacts related to grazing pressure such as disturbance and shrub 

encroachment drives functionally significant soil surface bacterial community changes and thus 

should be included in land management decision-making. Our specific objectives were to determine 

whether there are significant differences in bacterial populations associated with:  i) soils under tree, 

shrub and grasses, ii) subsurface soils and BSCs. 

Materials and Methods 

Study site 

Samples were collected from a long-term research site near Tsabong in south west Botswana (25o 56' 

51"S, 22o 25' 40"E) at the end of the dry season in November 2011 and during the wet season in March 

2012. Soils are formed on Kalahari Sands and are weakly acidic, fine sand-sized Arenosols (FAO 1990), 

with little or no horizon development. In lightly grazed areas, around 80 % of the surface is covered in 

a 3-4 mm deep BSC, which has been described in detail elsewhere (Thomas and Dougill 2007; Thomas 

2012). BSC cover is inversely related to grazing intensity and in frequently grazed areas, cover is 

typically < 10 % of the surface. The organic matter, carbon and nitrogen content of the Kalahari Sand 

soils is low, reflecting the limited biological productivity and highly oxidising nature of the soils 

(Thomas et al. 2012). BSCs, however, are enriched in ammonium, total N and organic C compared to 

the mineral soil (Thomas and Dougill, 2007; Thomas 2012).  

Vegetation cover is typical of an open-canopy, fine-leaf savannah, with a mix of perennial (Eragrostis 

lehmanniana) and annual (Schmidtia kalahariensis) grasses, woody shrubs (Grewia flava and Acacia 

mellifera) and trees, predominantly Acacia erioloba (Figure 1). Mean annual precipitation is 331 mm 

(1996 to 2013), with a low of 114 mm in 2006-07 and a high of 532 mm in 2001-02. Seasonal 
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variations in air temperature are extreme, with summer maxima frequently in excess of 40°C and 

winter below 0°C. 

Sample collection and preparation 

Soils and BSCs were collected from within a fenced 800 m x 500 m paddock where grazing animals 

had been excluded since the previous year. Sites were selected according to the overlying vegetation 

type, with three replicate sites under trees (A. erioloba), woody shrubs (G. flava), perennial 

(Eragrostis lehmanniana) and annual (Schmidtia kalahariensis) grasses (Figure 1).  

Soils at all sites, except those under trees, were covered in a BSC, previously classified as type 1 

(weakly consolidated with no surface discolouration) and 2 (more consolidated with black or brown 

speckled surface) by Thomas and Dougill (2006; 2007). Soils underneath trees were not crusted, but 

unconsolidated and slightly darkened by fragmented litter. There was evidence of severe animal 

disturbance under all tree canopies, a legacy of cattle seeking shade in the year prior to sampling. 

Soils under G. flava canopies were covered in a dry layer of leaf litter but were also well crusted. 

Samples were collected using aseptic techniques from 0 – 1 cm (incorporating the BSC) and 1 – 2 cm 

(the soil immediately below the BSC). The same sites were sampled in November 2011 and March 

2012, giving a total of 96 samples (48 in each season). Soils were dry at the time of sampling. 

Physico-chemical analyses 

Total carbon and nitrogen content of BSC and subsurface soils were determined using a CN element 

analyser (Leco TruSpec). Soil surface temperature was measured at approximately 2-hour intervals 

during the day at each sampling site for the duration of each field campaign, using an infrared 

thermometer. 

Molecular analyses of  bacterial community composition 

DNA was extracted from soil samples within 18 hours of sampling using a Powersoil DNA extraction 

kit (MoBio Inc.). Prior to extraction, samples of approximately 20 g were homogenised by shaking 

followed by cutting with a scalpel to disaggregate. Extractions were performed according to the 

manufacturer’s instructions except that the soil mass was increased slightly from 0.25 to 0.4 g based 
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on laboratory extraction tests and consultation with the manufacturer. DNA was eluted into 50 µl of 

buffer (10 mM Tris). Phylogenetically informative DNA sequences were obtained from each sample 

by tag-encoded FLX amplicon pyrosequencing targeting the bacterial 16S rRNA gene (Dowd et al. 

2008). This analysis was performed by Research and Testing Laboratory (Lubbock, TX, USA), using 

a Roche 454 FLX instrument with Titanium reagents.  

DNA was amplified for pyrosequencing using forward and reverse fusion primers. The forward 

primer was constructed with the Roche A linker (CCATCTCATCCCTGCGTGTCTCCGACTCAG), 

an 8-10bp barcode (see Online Resource 1), and the 341F primer (CCTACGGGAGGCAGCAG) 

(Muyzer et al. 1993). The reverse fusion primer was constructed with a biotin molecule, the Roche B 

linker (CCTATCCCCTGTGTGCCTTGGCAGTCTCAG), and the 907R primer 

(CCGTCAATTCMTTTGAGTTT) (Muyzer et al. 1998). Amplifications were performed in 25 µl 

reactions with Qiagen HotStar Taq master mix (Qiagen Inc, Valencia, California), 1µl of each 5µM 

primer, and 1µl of template.  Reactions were performed on ABI Veriti thermocyclers (Applied 

Biosytems, Carlsbad, California) under the following thermal profile: 95°C for 5 min, then 35 cycles 

of 94°C for 30 sec, 54°C for 40 sec, 72°C for 1 min, followed by one cycle of 72°C for 10 min and 

4°C hold. PCR products were visualized with eGels (Life Technologies, Grand Island, New York), 

pooled equimolar, and size selected before sequencing following manufacturer protocols.  

Bioinformatics and Statistical Analyses 

Sequence data were processed through the QIIME pipeline (Caporaso et al. 2010) and further analyses 

were performed using R (R Core Team 2012).  Denoising, quality filtering, OTU assignment, OTU 

table generation, and phylogenetic determinations were all performed in QIIME. Sequences shorter 

than 200 bp or having an average quality score <25 within a 50 base pair window were discarded. A 

97% sequence similarity was used to define OTUs (approximately species level; Stackebrandt and 

Goebel 1994) which were assigned using UCLUST (Edgar 2010), and chimeras were removed using 

chimeraslayer (Haas et al. 2011). After quality control there were on average 1,004 sequences per 

sample and a total of 2,705 OTUs (further details are provided in Online Resource 1). OTUs were 

identified through the RDP classifier (Wang et al. 2007) using the Greengenes database release of 
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October 2012 (DeSantis et al. 2006). Identified OTUs were assembled into an OTU table 

summarising the frequency of observation in each sample. These results formed the basis for the 

determination and comparison of community structure.  

Thousands of different taxa were detected, so constrained correspondence analysis was used to 

discern community features which specifically relate to vegetation zone or depth. Rare species 

comprising <0.01% of the sequences detected in the study were excluded from correspondence 

analysis because rare species can obscure community patterns and may be differentially detected 

depending on sample sequencing depth. Correspondence analysis was based on the Bray-Curtis 

distance measure and performed using the Phyloseq (McMurdie and Holmes 2013) wrapper to the 

Vegan package (Oksanen et al. 2012) for R. Unconstrained correspondence analysis (CA) was 

performed to visualise the overall community structure (shown in supplementary data Online 

Resource 2 only) whilst constrained correspondence analysis (CCA) was employed to discern 

community features which specifically relate to vegetation zone or depth. Permutation tests (n=1000) 

were used to test the significance of measured environmental variables to the ordination. 

Differences in community structure were assessed using ADONIS, a permutational multivariate 

analysis of variance test in the R package Vegan (Oksanen et al. 2012), to determine whether 

communities differ with respect to vegetation zone, depth, or sampling month. We used the Bray-

Curtis distance measure and performed the test at all taxonomic levels from phylum to species. OTU 

richness and community diversity were estimated using the Chao1 and Shannon methods respectively, 

implemented in the Phyloseq package. Richness and diversity calculations used the full data set. 

Kruskal-Wallis tests were used to determine whether each OTU relative abundance differed between 

vegetation zone, depth, or sampling month. The significance of OTU abundance correlations with 

continuous variables (e.g carbon or richness) was assessed using Spearman's test. P-values were 

corrected to account for multiple comparisons using the false discovery rate method (Benjamini and 

Hochberg 1995). Significant findings were tested further using post-hoc tests to identify the changes 

responsible. We regarded results with corrected p<0.05 as being significant. 
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Availability of sequence data 

Sequence data and metadata are available on the MG-RAST metagenomics analysis server (Meyer et 

al. 2008) at http://metagenomics.anl.gov/linkin.cgi?project=6691. 

Results 

Soil Chemistry 

Soil carbon was significantly higher in the soil surface (0.7% ± 0.1 SE) compared to the subsurface 

soil (0.4% ± 0.1 SE), and also differed significantly between vegetation classifications (Figure 2) but 

not by month. Total soil carbon and nitrogen were closely correlated and the mean C:N ratio was 9:1. 

The C:N ratio was significantly higher in BSCs, (ANOVA F=8.91, df=1,p= 0.0047), but did not vary 

significantly with respect to vegetation zones. 

Bacterial diversity 

The Chao1 richness estimate and Shannon diversity index (Figure 3) provide an indication of the total 

number of species and the microbial diversity (taking account of number of species and evenness) in 

each niche. Richness and diversity differed significantly with respect to vegetation zone (Kruskal-

Wallis chi-squared = 22.91, df = 3, p-value = 4.22×10-5) but not depth, although diversity was close to 

our significance threshold for depth (Kruskal-Wallis chi-squared = 2.93, df = 1, p-value = 0.087). 

Both diversity (Spearman's rank correlation rho = 0.5, p-value = 3×10-4) and richness (rho = 0.5, p-

value = 3×10-4) were positively correlated with carbon content of the soil. Diversity measures for each 

sample are provided in Online Resource 1. 

Bacterial community structure 

ADONIS showed that the bacterial communities differed by depth and by vegetation zone (p<0.05, 

see Online Resource 3 for test statistics) at all taxonomic ranks from phylum to species, but did not 

differ in relation to sampling month except for at the rank of Family. Interactions were detected 

(p<0.05) between vegetation zone and depth at all taxonomic ranks except for Genus (p=0.051), and 

also between month and vegetation zones at family level and higher taxa. A total of 28 bacterial phyla 

were detected, and the top 9 shown in Figure 4 account for 99% of sequences. Sequences from 
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Actinobacteria and Proteobacteria numerically dominated the samples, together representing 63% of 

sequences. Most phyla detection frequencies differed significantly (p<0.05, see Online Resource 4 for 

test statistics) with respect to depth or vegetation zone, or both (Table 1). Cyanobacteria and 

Chloroflexi were more abundant in grass areas, especially the Cyanobacteria which were only rarely 

detected in tree and shrub areas. Cyanobacteria were also very rare in all subsurface soils (1-2 cm 

depth), only being found in large number in the BSCs of grass interspaces. Bacteroidetes and 

Cyanobacteria were significantly associated with BSCs (0-1 cm depth), whilst Acidobacteria, 

Actinobacteria, Chloroflexi, and Firmicutes were significantly associated with subsurface soil (1-2 cm 

depth).  Phylum composition did not vary significantly in relation to the sampling season for any of 

the top 9 phyla. Data for rarer phyla is also provided in Online Resource 4. 

Constrained correspondence analysis was used to generate a visual representation of the microbial 

community structure differences between depths and vegetation zones. Sequences accounting for 

<0.01% of the library were excluded from this analysis, leaving 934 OTUs. The microbial 

communities were separated by vegetation type (tree/shrub or grasses) on axis 1, and by depth on axis 

2 (Figure 5). Unconstrained correspondence analysis yielded similar but less well defined patterns 

(Online Resource 2). Soil carbon (and nitrogen) content and soil temperature were significant to the 

ordination as determined by permutation tests (n=1000). Vectors show that soil carbon and nitrogen 

increase with axis 1 (direction of tree and shrub samples), whilst soil surface temperature increases in 

the opposite direction (i.e. in the direction of grass interspace samples).  

Abundant taxa (OTU level) 

The detection frequencies of the most abundant 9 OTUs are shown in Figure 6. Together these 9 

OTUs accounted for 27% of sequences and all of them had different detection frequencies (p<0.05, 

see Online Resource 4 for test statistics) with respect to depth or vegetation zone (Table 2). Similar 

plots and tables for the top 9 Bacteroidetes and Cyanobacteria are shown in Figure 7 and Table 3, 

which account for 10% of sequences. The OTUs of these two phyla were selected because they were 

detected more often in BSC samples compared to subsurface soil. OTU composition did not vary 

significantly in relation to the sampling month for any of the top 9 OTUs (Online Resource 4). In 
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addition to the overall top OTUs shown in Figure 6, we present in Online Resource 4 similar plots and 

tables for the most abundant OTUs belonging to each phylum. These are included to permit readers 

interested in particular taxa to easily investigate these in our data, however space and time do not 

permit detailed presentation of more than a few OTUs here. 

The OTUs shown in figures 6 and 7 are additionally plotted on the ordination in Figure 5, illustrating 

their contributions to the community structure of samples in the ordination. Cyanobacterial OTUs are 

all clustered near the grass interspace BSC samples (0-1 cm depth) whilst Bacteroidetes OTUs are 

more spread out but tending towards the tree and shrub soil surface samples (0-1 cm depth). The 

overall most abundant OTUs are spread out on the ordination but with more near the grass area 

samples. 

Discussion 

Phylum level community structure 

The distribution of the top 9 bacterial phyla accounting for 99% of sequences (Figure 4, Table 1) 

indicate that Bacteroidetes and Cyanobacteria are significantly associated with BSCs (Figure 7, Table 

3). The crucial role of Cyanobacteria in BSC carbon and nitrogen cycling is already widely 

recognised, whereas Bacteroidetes, although ubiquitous in soil, are not commonly regarded as key 

BSC community members in the current literature. 

Using similar methods to this study, Steven et al. (2013) aimed to determine BSC microbial 

community differences with respect to soil type (sandstone, shale, and gypsum). Their samples were 

numerically dominated by the same top 6 phyla found in this study: Proteobacteria, Cyanobacteria, 

Chloroflexi, Bacteroidetes, Actinobacteria, and Acidobacteria. They found Cyanobacteria and 

Proteobacteria to be associated with BSCs whilst we found Cyanobacteria and Bacteroidetes to be 

associated with BSCs. The difference may be because Bacteroidetes are particularly dominant in the 

soil surface under trees and shrubs (e.g. Figure 5) which were not a factor in the work of Steven et al. 

(2013). In the underlying soil they found enrichment of Chloroflexi, which we also found in addition 

to Acidobacteria, Actinobacteria, and Firmicutes. Steven et al. (2013) suggested that the Chloroflexi 
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might be involved in anaerobic processes including photoheterotrophy and chemoheterotrophy, which 

would increase the productivity of BSCs and enable them to continue functioning under a wider range 

of environmental conditions.  

Cyanobacteria comprised 8.1% of our sequences as 38 different OTUs. They were found 

predominantly in BSCs of the grass areas and are dominated by a single Phormidium species (OTU 

1912). Other typical cyanobacterial genera found in BSCs include Microcoleus, Leptolyngbya, 

Nostoc, and Scytonema species (Büdel et al. 2009), but these were not identified in our samples. The 

majority of cyanobacterial sequences obtained could not be classified to genus level however and it is 

known that molecular identification of Cyanobacteria is problematic (Dojani et al. 2013), so it is 

possible that these genera were present but not detected or identified. A higher frequency of 

Cyanobacteria was detected in the perennial grass compared to the annual grass, probably reflecting 

the more stabilised interspaces of perennial grass being slightly more developed. Due to the 

dominance of Cyanobacteria in grass interspace BSCs, it is likely that some of the phyla or OTUs 

found to be more abundant in subsurface soil are not specifically adapted for the soil niche, but may 

be excluded from the surface by competition. 

Like the Cyanobacteria, Bacteroidetes were also significantly more abundant in the soil surface 

compared to the subsurface soil, however in this case the relationship held also for soils under tree 

and shrub canopies. Furthermore, whereas the cyanobacterial abundance was mostly achieved through 

a single OTU being very abundant in grass area BSCs, the Bacteroidetes phylum abundance is due to 

the collective abundance of many OTUs across all of the vegetation zones (Figure 7). Overall the 

Bacteroidetes were slightly less abundant than the Cyanobacteria, comprising 5.1% of sequences, but 

there were many more OTUs (297).  

Bacteroidetes are ubiquitous in the soil and have a vast catabolic repertoire, particularly in the 

breakdown of complex carbohydrates. Thomas et al. (2011) point out that many carbohydrates are 

niche specific, and this seems a very likely scenario for BSCs because their constituent organisms are 

subject to unique survival challenges which will select for production of specialist biomolecules. 
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Bacteroidetes may therefore play a vital role in the recycling of niche specific carbohydrates and 

associated molecules. It is clear that the soil surface in grass and tree/shrub areas will be 

fundamentally different in terms of carbohydrate composition because only the grass interspace areas 

receive significant primary production from Cyanobacteria and the stress of midday sun, therefore 

different Bacteroidetes OTUs may be providing specialist degradation roles in these distinct niches. A 

key role for BSC Bacteroidetes in carbon cycling is further supported by the work of Bailey et al. 

(2013), which demonstrated a link between Chitinophagaceae family Bacteroidetes abundance with 

β-glucosidase activity in soil. Eight of the top 9 Bacteroidetes in our samples belonged to the 

Chitinophagaceae family.  

In an attempt to ecologically classify soil bacteria, Fierer et al. (2007) have shown in a meta-analysis 

that phylum abundances in soil are correlated with carbon availability. This enabled them to broadly 

classify Bacteroidetes and β-Proteobacteria as copiotrophs, and Acidobacteria as oligotrophs based 

on whether phylum abundance is positively or negatively correlated with carbon availability 

respectively. Previously Smit et al. (2001) had made a similar suggestion: that the ratio of α- and γ-

Proteobacteria to Acidobacteria could provide an indication as to the nutritional status of the soil. 

Copiotrophic and oligotrophic groupings are similar to the r- and K-strategists recognised in 

macroscopic ecology (MacArthur and Wilson 1967). Copiotrophs therefore can be expected to 

maximise their growth rates when resources are plentiful whereas oligotrophs are adapted for 

maximal efficiency in the use of rare resources.  

Based on correlation with total soil carbon (Figure 4b, Online Resource 4) our data identify 

Bacteroidetes, Gemmatimonadetes and all proteobacterial classes (α, β, δ, γ) as potential copiotrophs, 

and Acidobacteria and candidate division WPS-2 as potential oligotrophs in Kalahari soils.  

Chloroflexi abundances were also negatively correlated with carbon, however due to their carbon 

fixing abilities soil carbon data are not suitable to attempt classification. In general, oligotrophs may 

be expected to function as primary colonisers in the development of BSCs on nutrient-poor soils such 

as Kalahari Sand, and copiotrophs may become more dominant as the crust develops and becomes 

more productive. The mean carbon content in our samples was 0.5% ± 0.1 SE with a maximum of 
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2.2%, which is low compared to typical mesic soils (Lal 2004) so an abundance of oligotrophs might 

be expected, especially in the grass interspaces where there was least carbon. However, the 

oligotroph/copiotroph classification is a continuum and may relate not only to soil total carbon, but 

more specifically to available carbon and carbon turnover rate. From a microbial growth perspective 

the available carbon fraction is determined by the physiological capabilities of the community and this 

also defines the amount of soil carbon which can be regarded as recalcitrant (Schmidt et al. 2011). 

High carbon turnover rate has previously been calculated for cryptogamic crusts (Elbert et al. 2012). 

This could help copiotrophs to maintain high catabolic rates even when soil carbon is low, so long as 

there is primary production or other nutrient input available.  

Bacterial community diversity 

Previous studies have found that dryland BSC and soil bacterial richness and diversity do not vary 

with respect to depth or presence of plants, although the community composition does vary (Garcia-

Pichel et al. 2003; Saul-Tcherkas and Steinberger 2011; Steven et al. 2013). Furthermore Nagy et al. 

(2005) found no difference in community composition between plant canopies and interspaces, 

interpreting this to indicate probable independence of BSC communities for vascular plant resources. 

Conversely, our results show that samples from different depths and near different plants have distinct 

microbial communities (Figure 4) which also differ in richness and diversity (Figure 3). This is not 

necessarily a contradiction, however, due to differences in methodology, edaphic factors and 

disturbance regime in the previous and current studies. In our samples it seems most likely that the 

tree and shrub bacterial communities are at least partly, if not significantly, dependent on vascular 

plant and animal-derived resources because they lack phototrophs. Animal disturbance could be a key 

factor in differentiating soil microbial communities because severe animal disturbance would lead to 

burial of phototrophs, selectively disadvantaging these organisms but not significantly disadvantaging 

heterotrophs which can function at any depth. In the case of our grass interspaces, animal disturbance 

is less concentrated and plant and animal derived inputs are expected to be less, suggesting that the 

phototrophic component of BSCs will be more resilient compared to those near trees and shrubs.  
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Niche partitioning 

Our results clearly demonstrate niche partitioning of the microbial community between BSCs and the 

subsurface soil, and between soils under different vegetation types. This is evident from the phylum 

level breakdown (Figure 4), the most abundant OTUs overall (Figure 6), the OTUs within each 

phylum (Figure 7, Online Resource 4), and the overall community structure (Figure 5). Although in 

principle different microbial communities can be functionally identical, we expect that the differences 

observed between sites and depths are at least partly driven by different environmental conditions 

requiring a different functional response.  

From our field observations and soil chemistry results (Figure 2), we would expect the grass area 

BSCs to be functionally similar on the macroscopic scale because the conditions are similar. One 

difference is that the BSC patches in perennial grass interspaces are likely to be older than the patches 

in annual grass interspaces, because the interspaces have become stabilised near perennial grasses.  

A remarkable result was the detection of a clear difference between the soil bacterial community in 

the surface and below the surface under trees.  At the time of sampling, it appeared that the 

homogenisation of the soil resulting from animal disturbances, had removed all possibility of 

retaining any depth dependent structure in the biological community. In fact it can be seen clearly in 

Figure 5 and other figures that the surface (0-1 cm depth) and subsurface (1-2 cm depth) communities 

from under the trees were quite different, and also that they cluster closely with the same respective 

communities under the shrub which were not subject to disturbance by cattle. The separation of BSC 

and subsurface soil communities for both tree/shrub and grass locations on axis 2 of the ordination in 

Figure 5 suggests that there are community structure patterns characterising surface and sub-surface 

microbial communities, which apply regardless of the presence of BSC or nearby vegetation.  

The clear identification of niche partitioning leads to questions about the functional significance of 

different communities, and the ecosystem services delivered by BSCs compared to the subsurface 

soil. The experimental design of this study means that we cannot thoroughly address these questions 

but it does highlight the need for future targeted studies to do so. We can use the taxonomic 
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identification of sequences to infer possible functions based on existing knowledge about microbial 

function in the environment, but proof of function needs to be addressed separately. 

Although we have taken microbial community niche partitioning as an indicator of functional 

differences between soil depths and vegetation zones, this does not imply that BSC community 

structure is shaped only by deterministic factors. There is a growing recognition of the applicability of 

neutral models in determining microbial community structure. These models confer key roles to the 

stochastic processes of birth, death and immigration (Sloan et al. 2006) whilst ignoring deterministic 

factors such as a species adaptation to drought. Caruso et al. (2011) have suggested that both 

stochastic and deterministic processes interact in the assembly of dryland microbial communities and 

that the role of niche partitioning at fine scales in dryland ecosystems has been previously 

underestimated. They suggest it is incorrect to assume that extreme conditions are the main 

determinant of species distribution, because this would lead to the conclusion that communities in 

extreme environments should converge towards stable low diversity communities. The most extreme 

micro-environments in our study were the BSCs in grassed areas, but they should not necessarily be 

regarded extreme for adapted microbes. These areas did have the lowest diversity in our study, 

although the community structure varied greatly between individual samples. Whilst this variability in 

BSC community structure may be explained in the context of classical ecology as resulting from 

unobserved environmental heterogeneity and community succession, it is also quite plausible that 

stochastic processes may be playing a major role in community assembly. As BSCs have been 

recognised as ecosystem engineers (Bowker 2007), the prospect of stochastic community assembly is 

very important because it may directly drive diversity of BSC function and soil properties, thus 

diversifying the landscape itself. 

Possible ecological significance of the most abundant OTUs 

Three of the top 9 OTUs (Figure 6, Table 2) were significantly associated with BSCs (0-1 cm depth) 

based on frequency of sequence detection. These were a cyanobacterium of the genus Phormidium 

(OTU 1912), a Methylobacterium species (OTU 1064) belonging to the phylum Proteobacteria, and a 

Balneimonas species (OTU 1150) of the phylum Proteobacteria. In addition, sequences of  
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proteobacterial OTU 2850 and actinobacterial OTU 3323 were found to be significantly more 

abundant in subsurface soil compared to BSC. It can be seen in Figure 6 that in several cases 

differential abundance between BSC and subsurface soil appears to be affected by the vegetation 

classification, particularly grasses vs. tree or shrub (e.g. OTU 1912). This is supported by the 

ADONIS results (Online Resource 3) which suggest that there is a significant interaction between 

depth and vegetation zone driving microbial community structure. 

Phormidium species have previously been described as typical Cyanobacteria of early successional 

stage BSCs by Büdel et al. (2009), consistent with our present observation in weakly developed type 1 

and type 2 BSCs (Thomas and Dougill 2006; 2007). They are widespread filamentous Cyanobacteria 

which are found commonly in hot and cold arid soils but are also found in aquatic habitats including 

ultra-oligotrophic Antarctic seasonal lakes (Keskitalo et al. 2013), demonstrating a great plasticity for 

the contrasting environmental conditions of relevance to the Kalahari Sand soil surface.  

Chen et al. (2012) found P. tenue to be potentially useful for the stabilisation of sand dunes by 

inoculation due to the desiccation tolerance afforded by its extracellular polysaccharide (EPS). The 

EPS of P. tenue has also been shown to promote the germination of seeds and the fitness of seedlings 

(Xu et al. 2013), which may have been related to numerous mechanisms including water retention, 

provision of nutrients, and protection from oxidative stress. Furthermore, Boopathi et al. (2013) 

showed that a Phormidium species associated with mangroves produces indole-3-acetic acid (IAA) 

which is an important plant hormone associated with diverse responses including enhanced 

germination and root growth.  

BSCs have been associated with both enhancement and inhibition of plant growth through a variety of 

mechanisms and with some controversy (e.g. Beyschlag et al. 2008; Prasse and Bornkamm 2000) . 

We tentatively suggest that microbial secretion of plant hormones may be an as-yet unrecognised 

process of relevance to BSC-plant interactions, and that Phormidium species could influence plant 

cover in the Kalahari if they are secreting IAA similarly to the species studied by Boopathi et al. 

(2013). The recruitment of plants is potentially at odds with the maintenance of a photosynthetic BSC 
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due to competition, so one might expect the exclusion of plants rather than their promotion to be a 

more successful ecological strategy for BSC communities. Another effect of IAA on plant roots is to 

reduce cell wall integrity, causing the release of nutrients such as sugars which can promote microbial 

populations near the root. Thus it is possible that in addition to being a significant primary producer in 

BSCs, Phormidium species may also be able to derive carbon from plants, reducing reliance on 

photosynthesis and potentially promoting further plant-microbe interactions. Again, this supposition is 

dependent upon the production of plant hormones by the Phormidium species in the BSC which has 

not been tested. The dominance of sequences assigned to this Phormidium OTU in our samples 

strongly suggests a numerical dominance of the BSC bacterial community, and leads to the 

expectation of a large amount of Phormidium-derived EPS in the BSCs and soils examined in this 

study. The phyla Bacteroidetes and Cyanobacteria were both more abundant in BSC compared to 

subsurface soil, however unlike the Bacteroidetes which were represented by many OTUs, the 

Cyanobacteria were dominated by the single Phormidium OTU 1912. This may be a reflection of the 

different life strategies of the phyla. The Bacteroidetes likely being specialist degraders in BSCs as 

discussed earlier, are strongly dependent on the soil makeup as determined by the life history and 

current activity in the soil they inhabit, so a large genetic (functional) diversity is called for. On the 

other hand Cyanobacteria being principally photosynthetic are probably less sensitive to soil life 

history, but their distribution is likely to be controlled more by abiotic factors such as weather and 

hydrology. Since the Kalahari Sand substratum is so uniform over very large areas this suggests a 

possibility for one or a few Phormidium species to be strongly influencing the Kalahari soil surface on 

a very large scale far exceeding our study site.  

The Balneimonas (OTU 1150) abundance was positively correlated to soil carbon, suggesting it could 

be functioning as a copiotroph. Six of the other abundant OTUs which were not significantly 

associated with BSCs were negatively correlated with soil carbon, so although potential oligotrophs 

are not significantly increased in crusts, they do appear to form a large fraction of the BSC and 

subsurface soil communities.  
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Balneomonas was recognised as a new genus in 2004 (Takeda et al. 2004), however it has since been 

proposed for reclassification as Microvirga by Weon et al. (2010). In any case the original description 

of the type species is of a thermophilic (40-45 °C optimum) cellulose producing species isolated from 

a bath fed by a hot spring in Japan and related to Methylobacterium which is the genus of our other 

OTU of interest here. Cellulose production at high temperature was identified as a remarkable 

property of the type species B. flocculans, and noted for causing flocculation of the cells via adhesive 

cellulose fibrils similar to those thought to be involved in nonspecific binding of other rhizobial 

bacteria to plant host cells. The production of EPS is recognised as an important factor in the 

development and survival of BSCs, and is normally attributed to cyanobacteria (Mager and Thomas 

2011). This result suggests that BSC stabilisation by EPS may also be facilitated by heterotrophic 

bacteria, and a role for Balneomonas species as BSC pioneers in advance of cyanobacterial 

establishment seems quite plausible. 

Our Methylobacterium OTU was significantly associated with BSCs but not with any particular 

vegetation zone, suggesting a role in the soil surface which is not related to the presence of a 

particular vegetation type. The type species M. organophilum (Patt et al. 1976) and others are claimed 

to be facultative methylotrophs – capable of growth on methane or other C1 carbon sources, however 

although facultative methylotrophy has now been proved for some organisms there has been some 

controversy over this (Thiesen and Murrell 2005).  It is thought that 50-90% of methane released in 

soils is oxidised by methylotrophs before reaching the atmosphere (Nazaries et al. 2013), therefore it 

is an important ecosystem function with relevance to climate change. None of the known 21 obligate 

methane oxidising genera (Nazaries et al. 2013) were detected in our samples.  

The most widely recognised role for Methylobacterium species is as epiphytes which consume 

methanol emitted from stomata and secrete plant growth promoting hormones (Lidstrom and 

Chistoserdova 2002). Several Methylobacterium isolates have been confirmed as aerobic anoxygenic 

phototrophs in BSCs (Csotonyi et al. 2010), meaning that their photosynthetic pathway does not 

produce oxygen, and that they are obligate aerobes (in contrast to most other anoxygenic 

phototrophs). This is an important finding because it increases the potential light harvesting efficiency 
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of BSCs. Csotonyi et al. (2010) found that anoxygenic phototrophs represented up to 5.9% of the 

cultivable BSC bacterial community, and we found Methylobacterium OTU 1064 alone represented 

3% of sequences in annual grass zone BSCs (Online Resource 4). 

Methodological limitations  

The determination of bacterial community structure through analysis of ribosomal RNA genes as 

carried out in this study has some limitations which should be kept in mind when interpreting results 

and planning future studies. Methodological aspects including DNA extraction efficiency differences, 

PCR bias, and primer specificity can affect observed sequence frequencies. Furthermore, natural 

rRNA gene copy number variation will affect results. For instance, it is known that oligotrophs in 

general carry fewer rRNA gene copies than copiotrophs (Klappenbach et al. 2000), which could lead 

to under-representation of oligotrophs in our study. 

Implications for land management 

The management of BSCs through protection, restoration, or engineering has the potential to deliver 

environmental benefits from local to global scales, and is relevant to numerous land management 

challenges. Landscape changes associated with moderate grazing in the Kalahari include a shift from 

perennial grass to annual grass species and the promotion of thorny shrubs (Skarpe 1990, Ward 2009). 

We characterised the microbial communities from soils near these plants and found that in all cases a 

surface specific community can be detected, even beneath the Acacia canopy where there was no 

consolidated BSC. This indicates a strong tendency of the soil community to become vertically 

stratified and suggests that once grazing pressure is removed a rapid recovery of the BSC is likely. 

Soil communities beneath tree/shrub canopies were distinct from those in grass interspaces as has 

been shown previously (Saul-Tcherkas and Steinberger 2011), showing that typical grazing induced 

vegetation change can be associated with a change in soil microbiota, notably a loss of 

Cyanobacteria. The extreme reduction in cyanobacterial inoculum may retard BSC establishment in 

heavily shrub-encroached areas, for instance after fire or attempts to reclaim the land by removal of 

shrubs. 
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The deliberate rehabilitation of BSCs to restore ecosystem function has been discussed by Bowker 

(2007) and recently confirmed by cyanobacterial inoculation of shifting sand dunes to establish BSCs 

which facilitated vascular plant succession from early nitrogen fixing legumes to latter successional 

grasses (Lan et al. 2014). A problem with the inoculation approach is that it usually relies upon a 

sacrifice zone, and may not work if there are nutrient or stability limitations. These problems can 

potentially be overcome by the industrial preparation of a designed mixed inoculum. Candidates for a 

BSC inoculum in the Kalahari rangelands could be identified for testing based upon our data, which is 

ideal for this purpose because early stage BSCs are likely to still contain in large number the pioneer 

species which helped them to become established. The Phormidium genus of Cyanobacteria (P. tenue 

specifically) has been shown by Chen et al. (2012) to possess excellent qualities for the stabilisation 

of sand, and its abundance in our study suggests that deliberate establishment on degraded land in the 

Kalahari could be feasible. A suitable inoculum to help the establishment of Cyanobacteria in general 

might include oligotrophic organisms such as Balneomonas species which are able to utilise 

recalcitrant carbon and quickly stabilise the soil by release of EPS, including beneath the photic zone. 

The idea that the early stages of BSC recovery or development could be helped by oligotrophic non-

photosynthetic bacteria has been confirmed by Wu et al. (2010) in laboratory and field experiments, 

however the identity of organisms involved was not known.  

Conclusions 

We found that the bacterial OTU (approximate species level) diversity was greater in subsurface soil 

(1-2 cm depth) compared to the BSC at the surface (0-1 cm depth), and community composition 

exhibited clear spatial patterns. Crusted grass interspaces were dominated by a single cyanobacterial 

OTU from the genus Phormidium, but Cyanobacteria were very rare in tree and shrub areas. The BSC 

community structure was not defined by the presence of Cyanobacteria alone nor by other 

phototrophs as is often presumed. In all areas a characteristic but variable BSC bacterial community 

was present, and this was defined in part by non-cyanobacterial OTUs which were associated with the 

soil surface, and especially the Bacteroidetes phylum. The functions of these BSC specific bacteria 

are unknown, but we speculated possible roles for the most abundant ones in soil stabilisation, 
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carbohydrate catabolism, photosynthesis, and plant interactions based on similar species reported in 

the literature. Our data suggest that shrub encroachment in Kalahari rangelands can almost eliminate 

Cyanobacteria from soil surfaces in some circumstances, depriving soils of the ecosystem services 

delivered by well-developed phototrophic crusts and limiting the potential for natural BSC 

regeneration. 
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Figure legends 

Fig. 1. Photographs showing examples of the four sampling zones. Letters in square brackets indicate 

abbreviations used throughout the manuscript. (a) Annual grass [AG] Schmidtia kalahariensis 

interspace. (b) Perennial grass [PG] Eragrostis lehmanniana interspace. (c) Shrub [S] Grewia flava. 

(d) Tree [T] Acacia erioloba. 

Fig. 2. Total carbon and nitrogen in BSC (0-1 cm depth) and soil (1-2 cm depth) samples at each site 

(n=6). Boxes represent the interquartile range (IQR), and error bars extend to the most extreme values 

within 1.5 * IQR of the box. Median values are shown as a line within the box and outliers are shown 

as black spots. Sample coding: AG=annual grass, PG=perennial grass, S=shrub, T=tree. Note that y 

axes differ. 

Fig. 3. OTU richness estimation (Chao1) and diversity index (Shannon). Results are plotted with 

respect to (a) sampling site; and (b) sample carbon content. Boxes represent the interquartile range 

(IQR), and error bars extend to the most extreme values within 1.5 * IQR of the box (n=5 or 6). 

Median values are shown as a line within the box and outliers are shown as black spots. Error bars in 

(b) indicate the standard error of the individual Chao1 estimations. Sample coding: AG=annual grass, 

PG=perennial grass, S=shrub, T=tree. Source data were rarefied to an even sampling depth of 437 

sequences per sample, causing loss of 2 samples and leaving 46 in the analysis. 

Fig. 4. Phylum abundance by (a) site and (b) soil carbon content. Boxes represent the interquartile 

range (IQR), and error bars extend to the most extreme values within 1.5 * IQR of the box (n=6). 

Median values are shown as a line within the box and outliers are shown as black spots. Sample 

coding: AG=annual grass, PG=perennial grass, S=shrub, T=tree. Significance and direction of 

correlation between phylum abundance and soil carbon is indicated by + or – (determined by 

Spearman test). Significance codes for positive correlation: +++ < 0.001; ++ < 0.01; + <0.05. Similar 

plots for less abundant phyla are included in in Online Resource 4. 

Fig. 5. Constrained correspondence analysis of the microbial community. Coloured markers indicate 

individual samples, and dispersion ellipses show the 95 % standard deviation confidence interval for 
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different depths and tree/shrub vs grass interspace classifications. OTU identification numbers are 

shown in different colours for the 9 most abundant OTUs belonging to the followng groups: full 

dataset (black), phylum Cyanobacteria (green), and phylum Bacteroidetes (blue). Environmental 

variables with significance p<0.05, are shown as biplotted vectors (based on permutation tests; 

n=1000). 

Fig. 6. Relative abundance of the top 9 OTUs detected in the study, by (a) site and (b) soil carbon 

content. Boxes represent the interquartile range (IQR), and error bars extend to the most extreme 

values within 1.5 * IQR of the box (n=6). Median values are shown as a line within the box and 

outliers are shown as black spots. Significance and direction of correlation between OTU abundance 

and soil carbon is indicated by + or - (determined by Spearman test). Significance codes for positive 

correlation: +++ < 0.001; ++ < 0.01; + <0.05. Sample coding: AG=annual grass, PG=perennial grass, 

S=shrub, T=tree. 

Fig. 7. Relative abundance of the top 9 OTUs from the phyla (a) Bacteroidetes; (b) Cyanobacteria. 

Boxes represent the interquartile range (IQR), and error bars extend to the most extreme values within 

1.5 * IQR of the box (n=6). Median values are shown as a line within the box and outliers are shown 

as black spots. Sample coding: AG=annual grass, PG=perennial grass, S=shrub, T=tree. Similar plots 

for other phyla are included in in Online Resource 4. 
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Tables 

Table 1. Significance of factors depth and vegetation on phylum abundance, as determined by 

Kruskal Wallis test. Significant effects were further tested by post-hoc analyses which are provided in 

Online Resource 4. Significance codes: ***<0.001; **<0.01; *<0.05; .<0.1. 

Phylum Depth Veg. 

Chloroflexi * *** 

Proteobacteria  *** 

Bacteroidetes ** *** 

Acidobacteria ** ** 

Firmicutes ** . 

Actinobacteria **  

Gemmatimonadetes  *** 

Cyanobacteria ** ** 

WPS-2  *** 
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Table 2. Taxonomic classification of the most abundant 9 OTUs found in the study. Significance of 

depth and vegetation on OTU abundance is indicated by ***<0.001; **<0.01; *<0.05; .<0.1., as 

determined by Kruskal Wallis test. Significant effects were further tested by post-hoc analyses which 

are provided in Online Resource 4. 

 Phylum Class Order Family Genus Depth Veg. 

654 Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae   *** 

761 Acidobacteria Solibacteres Solibacterales Solibacteraceae Candidatus Solibacter . *** 

1064 Proteobacteria Alphaproteobacteria Rhizobiales Methylobacteriaceae Methylobacterium ***  

1150 Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Balneimonas * *** 

1912 Cyanobacteria Oscillatoriophycideae Oscillatoriales Phormidiaceae Phormidium *** * 

2850 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae  *** ** 

3067 Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae   * 

3302 Actinobacteria Actinobacteria Actinomycetales Kineosporiaceae   *** 

3323 Actinobacteria Actinobacteria Actinomycetales Pseudonocardiaceae  ***  

 

  



34 | P a g e  
 

Table 3. Taxonomic classification of the most abundant 9 Bacteroidetes and Cyanobacteria OTUs 

found in the study. Significance of depth and vegetation on OTU abundance is indicated by *** p < 

0.001; ** p < 0.01; * p < 0.05, .<0.1.,  as determined by Kruskal Wallis test. Significant effects were 

further tested by post-hoc analyses which are provided in Online Resource 4. 

 Phylum Class Order Family Genus Depth Veg. 

177 Bacteroidetes Sphingobacteriia Sphingobacteriales Chitinophagaceae     ** 

1461 Bacteroidetes Sphingobacteriia Sphingobacteriales Chitinophagaceae Flavisolibacter .   

1508 Bacteroidetes Sphingobacteriia Sphingobacteriales Chitinophagaceae Flavisolibacter     

2853 Bacteroidetes Sphingobacteriia Sphingobacteriales Chitinophagaceae       

3081 Bacteroidetes Sphingobacteriia Sphingobacteriales Flexibacteraceae   ** * 

3166 Bacteroidetes Sphingobacteriia Sphingobacteriales Chitinophagaceae Segetibacter     

3388 Bacteroidetes Sphingobacteriia Sphingobacteriales Chitinophagaceae Segetibacter     

3476 Bacteroidetes Sphingobacteriia Sphingobacteriales Chitinophagaceae       

3635 Bacteroidetes Sphingobacteriia Sphingobacteriales Chitinophagaceae       

686 Cyanobacteria Oscillatoriophycideae       * * 

1110 Cyanobacteria Oscillatoriophycideae       *   

1198 Cyanobacteria Oscillatoriophycideae           

1499 Cyanobacteria 4C0d-2 MLE1-12         

1626 Cyanobacteria Oscillatoriophycideae           

1912 Cyanobacteria Oscillatoriophycideae Oscillatoriales Phormidiaceae Phormidium ** * 

1977 Cyanobacteria Oscillatoriophycideae         . 

3313 Cyanobacteria Oscillatoriophycideae       . * 

3453 Cyanobacteria Oscillatoriophycideae Oscillatoriales Phormidiaceae       
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Online resources 

OR1. Sample metadata and summary statistics, including pyrosequencing barcodes, number of 

sequences obtained, richness estimates, and diversity measures. This is a tab separated text file based 

on the sample map used in the QIIME pipeline and other downstream analyses. 

OR2: Constrained and unconstrained correspondence analyses of the microbial community including 

scree plots. 

OR3. Text file containing results from the ADONIS test comparing community structure with respect 

to vegetation, depth, and month. The test was performed at all taxonomic ranks from phylum to 

species.  

OR4. Zip file containing plots, statistical tests, and result tables of OTU abundances for the top 9 

OTUs in each phylum, and the proteobacterial classes. Files are descriptively named and include for 

each group of OTUs a zone plot and a carbon plot similar to those shown in Figure 4a and 4b 

respectively. Boxes represent the interquartile range (IQR), and error bars extend to the most extreme 

values within 1.5 * IQR of the box (n=6). Median values are shown as a line within the box and 

outliers are shown as black spots. Sample coding: AG=annual grass, PG=perennial grass, S=shrub, 

T=tree. Significance and direction of correlation between OTU abundance and soil carbon is indicated 

by + or – (determined by Spearman test). Significance codes for positive correlation: +++ < 0.001; ++ 

< 0.01; + <0.05.  

 


