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Age-related skeletal muscle dysfunction:
causes and mechanisms
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Abstract

Age-related muscle weakening may ultimately result in the transition from an independent to a dependent life-style. The
decline in muscle strength is larger than expected from the loss of muscle mass. Single fibre studies and ir vitro motility assays
indicate that part of the muscle dysfunction is due to modifications of the myosin molecule. A lower rate of protein turnover
may increase the chance of post-translational modifications such as oxidation and glycation. The impaired regenerative capac-
ity of old muscles is related to a lower differentiation capacity of myosatellite cells, which is most likely due to altered tran-
scriptional activity of myogenic regulatory factors (MRFs). However, old myosatellite cells can be rejuvenated when exposed
to serum from young individuals. This indicates that alterations in the environment of the satellite cells or circulating sub-
stances play an important role in impaired differentiation capacity of satellite cells in old age. It is proposed that systemic
inflammation may be that factor. Indeed, the inflammatory cytokine tumour necrosis factor-o: 1) impairs transcriptional reg-
ulation by MRFs, 2) suppresses myosatellite cell differentiation and 3) induces apoptosis. Moreover, muscle mass, strength
and the response to strength training in old age are all inversely related to the degree of systemic inflammation.
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Introduction

The proportion of elderly people in the Western World is
increasing steadily. The result of the ageing process is a
decline in organ function and skeletal muscle is no exception
to this. Indeed, the progressive loss of muscle mass con-
tributes significantly to the decline in the quality of life dur-
ing ageing. Ultimately, the loss of mobility that accompanies
muscle wasting may cause the transition from an independ-
ent to a dependent life-style, particularly when the rate of
muscle wasting is accelerated such as during hospitalisation.
Besides impaired balance due to muscle weakness', slowing
of the muscle may limit the ability to prevent falls thus con-
tributing to the increased incidence of fall-related injuries in
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old age’. Finally, loss of muscle strength appears to be a
strong predictor of the risk of mortality’. Clearly, a thorough
understanding of the causes and mechanisms of muscle wast-
ing and dysfunction that occurs with ageing is indispensable
to develop strategies aimed at attenuating or reversing the
age-related decline in muscle mass and function.

Causes of muscle wasting during ageing

Neural degeneration

Ageing is associated with a progressive loss of motor neu-
rons and, as a consequence, muscle fibres become denervat-
ed. Fortunately, many fibres are re-innervated by other
motor neurons thereby minimising the loss of functional mus-
cle fibres. However, the process is insufficient to fully com-
pensate for denervation resulting in atrophy and progressive
loss of muscle fibres’. Fast motor neurons seem to be prefer-
entially affected and over time the denervation/re-innerva-
tion process may result in loss and atrophy of type II fibres
and fibre type grouping of particularly type I fibres*”.

Vascular endothelial growth factor (VEGF) has been
shown to attenuate the loss of motor neurons in mice models



of amyotrophic lateral sclerosis and other neurodegenerative
disorders®. It is possible that an attenuated VEGF response
to ischaemia in old age, as observed in rabbit muscle tissue’,
and/or an inadequate perfusion of the spinal cord may under-
lie the loss of motor neurons seen with increasing age.

Disuse

The level of physical activity steadily declines with age®’
and disuse contributes to the decline in muscle mass and
function'®. However, where disuse as a result of, for instance,
immobilisation is accompanied by a slow-to-fast transition in
fibre type composition, ageing is accompanied by a fast-to-
slow transition'. This fast-to-slow transition is at least partly
a consequence of the denervation and re-innervation
process. In addition, highly active elderly people, such as
master swimmers and athletes, still have lower muscle mass
and strength than young controls and only resistance trained
master athletes have a similar strength and muscle size as
sedentary young controls'’. Even in sprint-trained master
athletes the age-related slowing and decline in specific ten-
sion of type I and Ila fibres was not reversed'>". It thus
appears that factors other than disuse contribute to the mus-
cle wasting and dysfunction during ageing.

Age-related muscle weakness and slowing

Ageing is not only associated with muscle weakening'”'"'*
' but also by a slowing of the muscle'"*'*!¥ and consequent-
ly a loss of power generating capacity'”?'. Several factors con-
tribute to this decline in muscle function, with the obvious
one being a loss of muscle mass'"'®"". The decline in muscle
mass, a combination of a loss of fibres® and preferential type
II fibre atrophy®!! does, however, not entirely explain muscle
dysfunction during ageing. Indeed, muscle weakness is more
pronounced than muscle atrophy, as reflected by a decrease
in force per anatomical cross-sectional area'"'”"®. Several fac-
tors may explain this decline in force per anatomical cross-
sectional area, such as alterations in fibre type composition,
the extent of voluntary activation, co-activation of antagonists
and/or altered muscle architecture.

It is unlikely that the shift from type II to type I fibres
would significantly contribute to the age-related loss of iso-
metric strength, as specific tension (force per physiological
cross-sectional area) does not differ significantly between
different fibre types*?. The ability to voluntarily activate a
muscle has been reported to be reduced but co-activation of
antagonistic muscles was similar in young and old people'’.
During ageing, a change in muscle architecture may further
explain the decline in strength. Yet, the decrease in specific
tension, calculated from muscle volume, fascicle length and
pennation angle, was more marked than the decline in force
per anatomical cross-sectional area'” indicating that at least
in the gastrocnemius muscle, changes in muscle architecture
do not explain muscle weakness in old age. Although it is
possible that an increase in connective and adipose tissue
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content could cause a reduction in force generated per cross-
sectional area of muscle, this did not explain the age-related
decline in specific tension in the rat plantaris muscle®.
Finally, an increase in tendon compliance in old age' may
cause a shortening of the sarcomeres during a contraction to
such an extent that the muscle functions at a sub-optimal
length causing a loss of force generating capacity'®. However,
taking into account all the above mentioned factors still does
not entirely explain the age-related muscle weakening, sug-
gesting some alterations within the muscle fibres themselves.
Indeed, a decrease in specific tension is a common observa-
tion in single skinned muscle fibres>*?%.

The age-related slowing is to some extent due to a reduc-
tion in fascicle length and increased tendon compliance'.
Since the shortening velocity of type II fibres is considerably
higher than that of type I fibres”*, a more substantial
cause for the slowing is the preferential loss of type II fibres,
causing an increase in the proportion of the muscle cross-
sectional area occupied by type I fibres'. Yet, even at the
level of the single fibre, type I and Ila fibres exhibit an age-
related slowing, as reflected in a reduced unloaded shorten-
ing velocity, independent of any change in myosin heavy or
light chain composition'>?>*°*, This suggests that alterations
in the myosin and/or actin filament take place during ageing.

Alterations in the myosin molecule

As indicated above, the declines in specific tension and
shortening velocity of single permeabilised muscle fibres of a
given type suggest that during ageing structural alterations in
the actin and or myosin filament take place. With in vitro
motility assays a similar decline in the velocity of movement
of actin filaments over slides coated with myosin isolated
from single rat fibres indicated that the myosin molecule has
indeed undergone some changes during ageing®. Evidence
has been obtained that an increased oxidation of myosin by
free radicals contributes to a decreased fraction of strongly
attached cross-bridges, which almost entirely explains the
age-related decline in specific tension of single rat skinned
muscle fibres®?”. Another factor that may play a role in the
muscle dysfunction of old age is the increase in glycated
myosin® as a consequence of a decrease in insulin sensitivity
and poor control of circulating glucose with advancing years.
In vitro motility assays reveal that incubation of myosin with
glucose, giving rise to glycation of the myosin molecule,
resulted in a marked decrease in the velocity of the actin fil-
aments, which was completely reversible by deglycation with
glutathione®,

Muscle degeneration and regeneration
Oxidative stress and protein turnover

When one considers that post-translational modification of
myosin, such as by oxidation or glycation, affects muscle func-

tion the question arises as to the cause of these modifications.
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Figure 1. The role of myogenic regulatory factors (MRFs) and inhibitors of differentiation (Id) proteins on muscle wasting during ageing. TNF-o:
tumour necrosis factor-a; solid lines indicate relations observed; broken lines indicate relations observed in cell culture and animal studies.

Clearly, oxidation of the myosin molecule must be a reflection
of oxidative stress, and the ‘free radical theory of ageing’ sug-
gests that the oxidative stress will increase with increasing age.
This oxidative stress may be the result of an accumulation of
‘minihits’, such as exposure to pollutants and events of tran-
sient hypoxia which not only reduce the efficiency of mito-
chondria but also increase the formation of reactive oxygen
species (ROS)*. Systemic inflammation, and in particular cir-
culating levels of Tumour Necrosis Factor-a (TNFa), may
increase the rate at which ROS are made®. Furthermore, the
damaging effect of ROS may be elevated in old age due to a
reduced ability to induce Heat Shock Protein 70 (HSP70), a
molecule which may protect against damage caused by ROS.
In line with this, it was found that muscles from old mice over-
expressing HSP70 recovered better from damage than normal
old mice™. Another possibility is that the replacement of
muscle proteins, including myosin, is delayed with ageing,
thereby increasing the chance of post-translational modifica-
tion. If this is the case this should be reflected by a decreased
rate of protein turnover during ageing. Indeed, the synthesis
rate of myosin is reduced with age®, and the activity of the
ubiquitin proteasome pathway, a complex that plays an impor-
tant role in protein degradation during muscle atrophy, has
been reported to be reduced in rat skeletal muscle*. Myogenic
regulatory factors (MRFs) play an important role in the tran-
scription of muscle specific genes, and hence the synthesis of
muscle specific proteins. Hence, the role of these proteins, and
inhibitor of differentiation (Id) proteins, in muscle regenera-
tion and wasting will be discussed in more detail (Figure 1).

Myogenic regulatory factors and inhibitors of differentiation

Myosatellite cells are central to muscle regeneration.
Although the proliferative capacity of satellite cells is main-
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tained during ageing, their number and capacity to differen-
tiate is diminished***. During the regenerative process the
satellite cells divide and subsequently differentiate, and the
induction of MRFs is crucial for this process*. The MRF
genes are a family of four muscle-specific transcription fac-
tors, myf-5, MyoD, myogenin and MRF4, regulating the
expression of muscle specific genes during the various stages
of differentiation of muscle tissue. They exert their role by
dimerisation with E-proteins, allowing them to bind to E-
boxes on DNA and initiating muscle specific gene transcrip-
tion. It is thus possible that alterations in MRF expression or
activity may play a role in muscle wasting during ageing
(Figure 1).

Although the elevated mRNA levels of MRFs** and
insulin-like growth factor-I (IGF-I) suggest that the regener-
ative drive is intact in old muscle, differentiation is impaired
indicating that muscle wasting in ageing is at least partly
related to a failure to differentiate®. At first glance this seems
contradictory, as MRFs play an important role in satellite
cell differentiation*. However, mRNA levels do not neces-
sarily reflect protein levels of MRFs. Indeed, in rat skeletal
muscle MRF protein levels have been reported to be
reduced during ageing even in the presence of elevated
mRNA levels®. In addition, the abundance of E-proteins,
the obligatory dimerisation partners of MRFs, is decreased
and may contribute to the reduced transcription of muscle
specific genes under the control of MRFs*. Finally,
increased expression of inhibitors of differentiation (Id) pro-
teins, although they stimulate satellite cell proliferation®,
may inhibit their differentiation.

Although elevated expression of Id proteins in old age®
may seem beneficial as they stimulate satellite cell prolifera-
tion, muscle fibres from transgenic mice over-expressing Id
proteins are atrophied”. Id proteins may cause atrophy by



impairing the activity of MRFs in three ways. First, Id pro-
teins dimerise with E-proteins and by sequestration of the E-
proteins diminish E-protein/MRF dimerisation which is a
pre-requisite for the transcriptional activity of the MRFs*.
Secondly, Id proteins may form heterodimers with MRFs
precluding the MRFs from binding to DNA*, Thirdly, het-
erodimerisation of MRFs with Id proteins makes the MRFs
more vulnerable to breakdown via the ubiquitin proteasome
pathway”. The elevated mRNA levels of MRFs in old age®
may be a means to offset to some extent the loss of MRF
activity”’. Besides hampering the activity of the MRFs, Id
proteins might also induce apoptosis***’. Indeed, the elevat-
ed apoptosis seen in old age correlated positively with the
expression of Id proteins™. Thus, elevated expression of Id
proteins and reduced protein expression and hampered
function of MRFs may underlie the impaired differentiation
of satellite cells*, diminished muscle protein synthesis and
increased apoptosis in old age. A further indication that
reduced expression of MRFs may play a role in skeletal mus-
cle wasting and dysfunction is the observation that similar to
ageing, bundles of the diaphragm of MyoD-/- mice produce
a lower specific tension, are slower and consequently have a
lower power generating capacity®’, possibly due to e.g., an
altered expression of proteins under the control of MyoD
such as desmin. A question that may arise is to what causes
the altered expression of these proteins.

The cellular environment

The reduced regenerative capacity of the muscle seems
reversible since old muscle when transplanted in a young
animal regenerates as well as a young muscle transplanted in
a young animal®. Muscle regeneration in old animals could
be improved when they shared their circulatory system with
young animals and satellite cells were rejuvenated when
exposed to serum of young mice*. Conversely, transplanta-
tion of a young muscle into an old animal® and exposure of
satellite cells from young animals to serum from old ani-
mals* attenuated their regenerative capacity. These obser-
vations strongly hint at age-related changes in circulating
substances affecting the regenerative potential of the ageing
satellite cell. This is a promising observation as it may open
avenues to increase muscle mass and improve function also
in old age.

One of the changes in circulating substances is a reduced
level of anabolic hormones, such as IGF-I and testosterone®
which decrease with age. The anabolic effect of these hor-
mones may be limited by elevated systemic inflammatory
cytokines such as TNFo and IL-6. For instance, there is a
lack of correlation between strength and circulating IGF-I in
elderly people when IL-6 levels are high'. Moreover, TNFa.
levels in the blood and muscle tissue are negatively related to
muscle mass and strength in the elderly”*>® and in many dis-
orders, such as chronic obstructive pulmonary disease and
heart failure, the muscle wasting is often associated with ele-
vated levels of plasma TNFa®", In rats, attenuation of the
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age-related muscle fibre atrophy was achieved with life-long
caloric restriction which was associated with a diminished
rise in plasma TNFa levels™. Finally, exposure of myoblasts
to TNFa induces apoptosis and suppresses differentiation®.
Therefore, it is proposed that an elevated level of inflamma-
tory cytokines, and in particular TNFa, is the main change in
circulating substances that contributes to muscle wasting
during ageing.

The effects of TNFa may be partly mediated by its effect
on MRF and Id protein expression. The expression of MyoD
and myogenin was reduced in myoblasts exposed to TNFa,
resulting in reduced mRNA levels of myosin and myofila-
ment synthesis®. Also in mice treated with TNFo muscle
regeneration was impaired as a result of the destabilisation
of MyoD®. It is therefore tempting to speculate that the
inverse relation of muscle protein synthesis rate and TNFa
levels in the muscle of elderly people™ is at least partly medi-
ated by the effect of TNFa on MRF expression.

As TNFa modulates the expression of Id proteins in neu-
ral tissue®, it is possible that the age-related increase in
apoptosis in skeletal muscle is, besides the induction of
apoptosis via the death domain™*®, at least partly mediated
by an increased expression of Id proteins induced by TNFa.

Response to exercise

Skeletal muscle is a highly adaptive tissue and responds
readily to altered functional demands. Where endurance
training and chronic electrical stimulation cause an increase
in the oxidative capacity and strength training or overload
lead to hypertrophy, disuse is accompanied by muscle atro-
phy'*®. Even in old age resistance training has been shown
to increase muscle mass and strength'®* and an increase in
tendon stiffness results in a more rapid rise of force during a
contraction'®, Furthermore, also in old age training reduces
the expression of TNFo™ and occurrence of apoptosis®’, and
may even protect against apoptosis during periods of
increased disuse as would occur during hospitalisation®.
This suggests that training provides an excellent means to
improve muscle function.

There is evidence, however, that muscle plasticity may
decrease with age, as reflected by attenuated hypertro-
phy'*'*%% " which may even be accompanied by muscle
weakening rather than an increase in strength'®, and a
delayed and incomplete adaptation to chronic electrical
stimulation™. Part of this impaired response in old age may
be brought about by an attenuated activation of the mTOR
pathway following a single bout of exercise”' and a dimin-
ished ability of satellite cells to differentiate™. In particular
the frail elderly fail to respond positively. In those people the
response is inversely related to the level of TNFa, or soluble
TNF-receptor, in the blood/muscle™. This may be related
to the ability of TNFa to induce its own expression via a pos-
itive feedback loop”™. Indeed, in transgenic mice overex-
pressing TNFa in the lung, which also exhibit elevated TNFa
levels in the blood and muscle tissue, the response to reload-
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ing after a period of unloading was severely diminished, due
to impaired proliferation and differentiation of satellite
cells™. This suggests that the benefits of training are limited
by, in particular, systemic inflammation.

Summary and conclusion

The age-related weakness and slowing of skeletal muscle
is not only attributable to muscle wasting and changes in
fibre type composition, but also to post-translational modifi-
cations of the myosin molecule. Part of this may be due to a
lower rate of protein turnover increasing the chance of pro-
tein modifications. The impaired regenerative capacity of
older muscle is related to a lower differentiation capacity of
myosatellite cells, which is most likely due to altered tran-
scriptional activity of myogenic regulatory factors. However,
old myosatellite cells can be rejuvenated when exposed to
serum from young individuals. This indicates that alterations
in the environment of the satellite cells or circulating sub-
stances play an important role in the impaired differentia-
tion capacity of satellite cells at old age. It is proposed that
systemic inflammation may be that factor, as muscle mass,
strength and the response to strength training in old age are
all inversely related to the degree of systemic inflammation.
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