e-space
Manchester Metropolitan University's Research Repository

A global-local artificial neural network with application to wave overtopping prediction

Wedge, David C. and Ingram, David M. and McLean, David A. and Mingham, Clive G. and Bandar, Zuhair A. (2005) A global-local artificial neural network with application to wave overtopping prediction. In: UNSPECIFIED Springer.

Full text not available from this repository.

Abstract

We present a hybrid Radial Basis Function (RBF) - sigmoid neural network with a three-step training algorithm that utilises both global search and gradient descent training. We test the effectiveness of our method using four synthetic datasets and demonstrate its use in wave overtopping prediction. It is shown that the hybrid architecture is often superior to architectures containing neurons of a single type in several ways: lower errors are often achievable using fewer hidden neurons and with less need for regularisation. Our Global-Local Artificial Neural Network (GL-ANN) is also seen to compare favourably with both Perceptron Radial Basis Net (PRBFN) and Regression Tree RBFs

Item Type: Book Section
Additional Information: The original publication is available at http://www.springer.com/
Divisions: Faculties > Faculty of Science and Engineering > Department of Computing, Mathematics & Digital Technology
Faculties > Faculty of Science and Engineering > Department of Computing and Mathematics: Centre for Mathematical Modelling and Flow Analysis (CMMFA)
Legacy Research Institutes > Dalton Research Institute > Environmental Science
Date Deposited: 14 Jul 2008 15:11
Last Modified: 01 Sep 2016 13:53
URI: http://e-space.mmu.ac.uk/id/eprint/31954

Actions (login required)

Edit Item Edit Item