e-space
Manchester Metropolitan University's Research Repository

Aminosalicylic acid reduces the antiproliferative effect of hyperglycaemia, advanced glycation endproducts and glycated basic fibroblast growth factor in cultured bovine aortic endothelial cells: comparison with aminoguanidine

Duraisamy, Yasotha and Gaffney, John and Slevin, Mark and Smith, Christopher A. and Williamson, Kenneth and Ahmed, Nessar (2003) Aminosalicylic acid reduces the antiproliferative effect of hyperglycaemia, advanced glycation endproducts and glycated basic fibroblast growth factor in cultured bovine aortic endothelial cells: comparison with aminoguanidine. ISSN 0300-8177

Full text not available from this repository.

Abstract

Hyperglycaemia reduces proliferation of bovine aortic endothelial cells in vitro. A similar effect in vivo may contribute to long-term complications of diabetes such as impaired wound-healing and retinopathy. We report the effect of increased glucose concentrations, glycated basic fibroblast growth factor (FGF-2) and bovine serum albumin-derived advanced glycation endproducts (BSA-AGE) on the proliferation of bovine aortic endothelial cells. Glucose (30 and 50 mmol/l) had an antiproliferative effect on endothelial cells. This effect may be mediated through reduced mitogenic activity of FGF-2. The glycation of FGF-2 with 250 mmol/l glucose-6-phosphate led to reduced mitogenic activity compared to native FGF-2. BSA-AGE at concentrations of 10, 50 and 250 g/ml had an antiproliferative effect on cultured endothelial cells. Aminosalicylic acid at a concentration of 200 mol/l proved to be more effective than equimolar concentrations of aminoguanidine in protecting endothelial cells against the antiproliferative effects of both high (30 mmol/l) glucose and 50 g/ml BSA-AGE. FGF-2 glycated in the presence of 4 mmol/l aminosalicylic acid or aminoguanidine retained mitogenic activity compared to that glycated in their absence. Compounds like aminoguanidine and, in particular, aminosalicylic acid protect endothelial cells against glucose-mediated toxicity and may therefore have therapeutic potential.

Impact and Reach

Statistics

Downloads
Activity Overview
0Downloads
209Hits

Additional statistics for this dataset are available via IRStats2.

Altmetric

Actions (login required)

Edit Item Edit Item